DeepSeek AI Deployment Guide
1. Introduction
DeepSeek AI offers various models for natural language processing (LLMs) and speech synthesis (TTS). This guide provides a step-by-step deployment method for both local and cloud-based setups.
2. Deploying DeepSeek LLM
2.1 Local Deployment (Using Docker & Hugging Face)
-
Prerequisites:
- NVIDIA GPU with CUDA support
- Docker installed
- Python 3.8+
transformers
andtorch
libraries
-
Using Hugging Face Model
pip install torch transformers
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek-ai/deepseek-llm-67b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") input_text = "Hello, how can I assist you?" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") output = model.generate(**inputs) print(tokenizer.decode(output[0]))
-
Using Docker Container
docker pull deepseekai/deepseek-llm docker run --gpus all -p 8000:8000 deepseekai/deepseek-llm
Access via API at
http://localhost:8000
2.2 Cloud Deployment (Using AWS & GPU Cloud)
- Choose a Cloud Provider: AWS, Google Cloud, Lambda Labs
- Launch an Instance:
- Select an A100 80GB or H100 GPU
- Install CUDA and dependencies
- Deploy DeepSeek LLM:
- Use Docker or Hugging Face API for efficient inference
3. Deploying DeepSeek TTS (Speech Synthesis)
3.1 Local Deployment
-
Install Dependencies:
pip install deepseek-tts torchaudio soundfile
-
Run Text-to-Speech Conversion:
from deepseek_tts import TTSModel model = TTSModel.load("deepseek-ai/deepseek-tts") audio = model.synthesize("Hello, welcome to DeepSeek AI!") with open("output.wav", "wb") as f: f.write(audio)
3.2 Cloud Deployment
DeepSeek provides API endpoints for cloud-based TTS.
- Sign up for DeepSeek API Access
- Use HTTP requests for audio synthesis:
curl -X POST "https://api.deepseek.ai/tts" \ -H "Authorization: Bearer YOUR_API_KEY" \ -d '{"text": "Hello, world!"}'
4. Conclusion
DeepSeek AI provides scalable solutions for both LLM and TTS, deployable locally or on the cloud. Choose your method based on available hardware and project requirements. For more details, visit DeepSeek AI.