Coursera-Machine Learning-ex5

本文详细介绍了线性回归的成本函数实现与正则化处理,通过learningCurve和validationCurve函数,展示了如何评估模型在不同数据集上的表现,并选择最佳的正则化参数λ。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Some Points:

 

The Results:

  • linearRegCostFunction.m
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

diff = X * theta - y;
regu = lambda * theta(2:end)' * theta(2:end);
J = (diff' * diff + regu) / (2 * m);

grad = (X' * diff + lambda * [0; theta(2:end)]) / m;
grad = grad(:);

end
  • learningCurve.m
function [error_train, error_val] = ...
    learningCurve(X, y, Xval, yval, lambda)


% Number of training examples
m = size(X, 1);

% You need to return these values correctly
error_train = zeros(m, 1);
error_val   = zeros(m, 1);


for i = 1:m
	theta = trainLinearReg(X(1:i, :), y(1:i), lambda);
	error_train(i) = linearRegCostFunction(X(1:i, :), y(1:i), theta, 0);
	% for the cross validation error,you should compute it over the entire cross validation set.
	error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);
end

end
  •  validationCurve.m
function [lambda_vec, error_train, error_val] = ...
    validationCurve(X, y, Xval, yval)

% Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';

% You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1);


for i =1:length(lambda_vec)
	lambda = lambda_vec(i);
	theta = trainLinearReg(X, y, lambda);
	error_train(i) = linearRegCostFunction(X, y, theta, 0);
	error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);
end


end

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值