u-boot.lds文件诠释

本文详细解析了U-Boot的链接脚本u-boot.lds,并解释了如何通过Makefile中的LDFLAGS变量及配置文件设定.text段的起始地址。通过对u-boot.lds的修改实验,揭示了_u_start地址为何指向特定内存位置的秘密。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

u-boot.lds文件诠释

 

网上大部分u-boot.lds文件的分析大部分都是千遍一律,例如下面就是本人在网上找到的关于u-boot.lds的资料。

OUTPUT_FORMAT("elf32-littlearm","elf32-littlearm","elf32-littlearm")

/*指定输出可执行文件是elf格式,32ARM指令,小端*/
OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/
ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/
SECTIONS
{

/*指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址,通常都是修改此处来完成*/
 .= 0x00000000;/*;0x0位置开始*/
 .= ALIGN(4);/*代码以4字节对齐*/
 .text :
 {
  cpu/arm920t/start.o (.text) 

    /*代码的第一个代码部分*/  
  *(.text)

  /*下面依次为各个text段函数*/
 }
 .= ALIGN(4);

/*代码以4字节对齐*/
 .rodata :{*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*)))}

 /*指定只读数据段*/
 .= ALIGN(4);

/*代码以4字节对齐*/
 .data :{*(.data)}
 .= ALIGN(4);

/*代码以4字节对齐*/
 .got :{*(.got)}

/*指定got, got段是uboot自定义的一个段, 非标准段*/
 .=.;
 __u_boot_cmd_start =.;

/*__u_boot_cmd_start赋值为当前位置, 即起始位置*/
 .u_boot_cmd :{*(.u_boot_cmd)}

 /*指定u_boot_cmd, uboot把所有的uboot命令放在该段.*/
 __u_boot_cmd_end =.;

 /*__u_boot_cmd_end赋值为当前位置,即结束位置*/
 .= ALIGN(4);

/*代码以4字节对齐*/
 __bss_start =.;

 /*__bss_start赋值为当前位置,bss段的开始位置*/
 .bss (NOLOAD):{*(.bss).= ALIGN(4);}

/*指定bss,告诉加载器不要加载这个段*/
 __bss_end =.;

/*_end赋值为当前位置,bss段的结束位置*/
}

 

看完上面的解析思路本来应该是很清晰的,于是乎编译u-boot,查看一下System.map,

 

30100000 T _start

30100020 t _undefined_instruction

30100024 t _software_interrupt

30100028 t _prefetch_abort

3010002c t _data_abort

30100030 t _not_used

30100034 t _irq

30100038 t _fiq

 

发现 _start 的链接地址不是u-boot.lds中.text 的当前地址0x00000000,而是0x30100000,这就产生很多疑问了:

(1)     为什么u-boot.lds指定的 .text 的首地址不起作用?

(2)     0x30100000是什么地址,由谁指定.text的首地址是0x30100000的呢?

(3)     假如有其他动作改变了 .text 的首地址,那么该动作跟u-boot.lds的优先级又是怎么决定的呢?

其实这三个问题都在Makefile的LDFLAGS 变量和u-boot.lds 中找到答案。我们不妨试着修改一下u-boot.lds,把u-boot.lds修改成如下(红色字体部分为修改过部分):

OUTPUT_FORMAT("elf32-littlearm","elf32-littlearm","elf32-littlearm")

/*指定输出可执行文件是elf格式,32ARM指令,小端*/
OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/
ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/
SECTIONS
{

/*指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址,通常都是修改此处来完成*/
 .= 0x30000000;/*;0x0位置开始*/
 .= ALIGN(4);/*代码以4字节对齐*/

.rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }
 .= ALIGN(4);

/*代码以4字节对齐*/

 .text :
 {
  cpu/arm920t/start.o (.text) 

    /*代码的第一个代码部分*/  
  *(.text)

  /*下面依次为各个text段函数*/
 } 

 /*指定只读数据段*/
 .= ALIGN(4);

/*代码以4字节对齐*/
 .data :{*(.data)}
 .= ALIGN(4);

/*代码以4字节对齐*/
 .got :{*(.got)}

/*指定got, got段是uboot自定义的一个段, 非标准段*/
 .=.;
 __u_boot_cmd_start =.;

/*__u_boot_cmd_start赋值为当前位置, 即起始位置*/
 .u_boot_cmd :{*(.u_boot_cmd)}

 /*指定u_boot_cmd, uboot把所有的uboot命令放在该段.*/
 __u_boot_cmd_end =.;

 /*__u_boot_cmd_end赋值为当前位置,即结束位置*/
 .= ALIGN(4);

/*代码以4字节对齐*/
 __bss_start =.;

 /*__bss_start赋值为当前位置,bss段的开始位置*/
 .bss (NOLOAD):{*(.bss).= ALIGN(4);}

/*指定bss,告诉加载器不要加载这个段*/
 __bss_end =.;

/*_end赋值为当前位置,bss段的结束位置*/
}

 

上面对u-boot.lds主要做了两点修改

(1)     把0x00000000 改成 0x30000000。

(2)     把 .text 和 .rodata 存放的地址调换了位置。

重新编译 u-boot, 查看System.map

30000000 R version_string

30000028 r C.27.2365

.

.

.

30100000 T _start

30100020 t _undefined_instruction

.

.

.

从上面的System.map部分内容可以看出:

(1)     u-boot.lds设定的地址(0x00000000或0x30000000)是有效的。

(2)     .text的地址仍然是30100000

 

跟着我们查看Makefile中的LDFLAGS变量,发现一条指令

LDFLAGS += -Ttext $(TEXT_BASE)  其中TEXT_BASE 是在u-boot根目录的board文件夹的对应的开发板名字的子目录下的config.mk文件中定义的

TEXT_BASE = 0x30100000

看到这里我们应该明白为什么_start,也就是.text的首地址总是等于0x30100000了,在连接的时候ld命令会把参数-Ttext指定的地址赋给.text,所以.text在u-boot.lds中的默认地址(当前地址)不起作用了。

 

 http://blog.youkuaiyun.com/qiaoliang328/article/details/5891913

JFM7VX690T型SRAM型现场可编程门阵列技术手册主要介绍的是上海复旦微电子集团股份有限公司(简称复旦微电子)生产的高性能FPGA产品JFM7VX690T。该产品属于JFM7系列,具有现场可编程特性,集成了功能强大且可以灵活配置组合的可编程资源,适用于实现多种功能,如输入输出接口、通用数字逻辑、存储器、数字信号处理和时钟管理等。JFM7VX690T型FPGA适用于复杂、高速的数字逻辑电路,广泛应用于通讯、信息处理、工业控制、数据中心、仪表测量、医疗仪器、人工智能、自动驾驶等领域。 产品特点包括: 1. 可配置逻辑资源(CLB),使用LUT6结构。 2. 包含CLB模块,可用于实现常规数字逻辑和分布式RAM。 3. 含有I/O、BlockRAM、DSP、MMCM、GTH等可编程模块。 4. 提供不同的封装规格和工作温度范围的产品,便于满足不同的使用环境。 JFM7VX690T产品系列中,有多种型号可供选择。例如: - JFM7VX690T80采用FCBGA1927封装,尺寸为45x45mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T80-AS同样采用FCBGA1927封装,但工作温度范围更广,为-55°C到+125°C,同样使用锡银焊球。 - JFM7VX690T80-N采用FCBGA1927封装和铅锡焊球,工作温度范围与JFM7VX690T80-AS相同。 - JFM7VX690T36的封装规格为FCBGA1761,尺寸为42.5x42.5mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T36-AS使用锡银焊球,工作温度范围为-55°C到+125°C。 - JFM7VX690T36-N使用铅锡焊球,工作温度范围与JFM7VX690T36-AS相同。 技术手册中还包含了一系列详细的技术参数,包括极限参数、推荐工作条件、电特性参数、ESD等级、MSL等级、重量等。在产品参数章节中,还特别强调了封装类型,包括外形图和尺寸、引出端定义等。引出端定义是指对FPGA芯片上的各个引脚的功能和接线规则进行说明,这对于FPGA的正确应用和电路设计至关重要。 应用指南章节涉及了FPGA在不同应用场景下的推荐使用方法。其中差异说明部分可能涉及产品之间的性能差异;关键性能对比可能包括功耗与速度对比、上电浪涌电流测试情况说明、GTH Channel Loss性能差异说明、GTH电源性能差异说明等。此外,手册可能还提供了其他推荐应用方案,例如不使用的BANK接法推荐、CCLK信号PCB布线推荐、JTAG级联PCB布线推荐、系统工作的复位方案推荐等,这些内容对于提高系统性能和稳定性有着重要作用。 焊接及注意事项章节则针对产品的焊接过程提供了指导,强调焊接过程中的注意事项,以确保产品在组装过程中的稳定性和可靠性。手册还明确指出,未经复旦微电子的许可,不得翻印或者复制全部或部分本资料的内容,且不承担采购方选择与使用本文描述的产品和服务的责任。 上海复旦微电子集团股份有限公司拥有相关的商标和知识产权。该公司在中国发布的技术手册,版权为上海复旦微电子集团股份有限公司所有,未经许可不得进行复制或传播。 技术手册提供了上海复旦微电子集团股份有限公司销售及服务网点的信息,方便用户在需要时能够联系到相应的服务机构,获取最新信息和必要的支持。同时,用户可以访问复旦微电子的官方网站(***以获取更多产品信息和公司动态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值