代码由opencv文档中的SVM例程修改得到:两者的略有结果有差距基于opencv的神经网络两类分类算法的二维空间可视化demon,希望可以帮到大家
int width = 512, height = 512;
Mat image = Mat::zeros(height,width,CV_8UC3);
// Set up training data
float labels[4] = {1.0, -1.0, -1.0, -1.0};
Mat labelsMat(4, 1, CV_32FC1, labels);
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
// Set up BPNetwork's parameters
CvANN_MLP_TrainParams params;
params.train_method=CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale=0.1;
params.bp_moment_scale=0.1;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10000,0.000001); //设置结束条件
//params.train_method=CvANN_MLP_TrainParams::RPROP;
//params.rp_dw0 = 0.1;
//params.rp_dw_plus = 1.2;
//params.rp_dw_minus = 0.5;
//params.rp_dw_min = FLT_EPSILON;
//params.rp_dw_max = 50.;
//Setup the BPNetwork
CvANN_MLP bp;
Mat layerSizes=(Mat_<int>(1,5) << 2,2,2,2,1);
bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM,1.0,1.0);//CvANN_MLP::SIGMOID_SYM
//CvANN_MLP::GAUSSIAN
//CvANN_MLP::IDENTITY
bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
Vec3b green(0,255,0), blue (255,0,0);
// Show the decision regions given by the SVM
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i,j);
Mat responseMat;
bp.predict(sampleMat,responseMat);
float* p=responseMat.ptr<float>(0);
float response= (float)(*p) ;
if (response >0)
image.at<Vec3b>(j, i) = green;
else
image.at<Vec3b>(j, i) = blue;
}
// Show the training data
int thickness = -1;
int lineType = 8;
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
imwrite("result.png", image); // save the image
imshow("BP Simple Example", image); // show it to the user
运行结果:

本文通过opencv实现了一个两类分类问题的神经网络算法,并详细展示了可视化过程,帮助读者理解机器学习中的图像分类。
1万+

被折叠的 条评论
为什么被折叠?



