HashMap原理

[b]概述:[/b]
HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

[b]HashMap的数据结构:[/b]
HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体
transient Entry[] table;

static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
final int hash;
……
}

可以看出,Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。
[b]HashMap的存取实现:[/b]

public V put(K key, V value)
{
// HashMap允许存放null键和null值。
// 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。
if (key == null)
return putForNullKey(value);
// 根据key的keyCode重新计算hash值。
int hash = hash(key.hashCode());
// 搜索指定hash值在对应table中的索引。
int i = indexFor(hash, table.length);
// 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。
for (Entry<K,V> e = table[i]; e != null; e = e.next)
{
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 如果i索引处的Entry为null,表明此处还没有Entry。
modCount++;
// 将key、value添加到i索引处。
addEntry(hash, key, value, i);
return null;
}


当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。

addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的i索引处。addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:
void addEntry(int hash, K key, V value, int bucketIndex)
{
// 获取指定 bucketIndex 索引处的 Entry
Entry<K,V> e = table[bucketIndex];
// 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
// 如果 Map 中的 key-value 对的数量超过了极限
if (size++ >= threshold)
// 把 table 对象的长度扩充到原来的2倍。
resize(2 * table.length);
}


hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。
     static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}



我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:


static int indexFor(int h, int length) 
{
return h & (length-1);
}



在 HashMap 构造器中有如下代码:
          int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
[color=red]这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。[/color]

这里长度为什么是2的n次方是有原因的,看如下分析:
假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:
		h & (table.length-1)    	    hash     		table.length-1
8 & (15-1): 0100 & 1110 = 0100
9 & (15-1): 0101 & 1110 = 0100
----------------------------------------------------------------------------------------------------------------
8 & (16-1): 0100 & 1111 = 0100
9 & (16-1): 0101 & 1111 = 0101


当它们和15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,而16-1则不会出现上述问题。
[color=red]所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。[/color]


    public V get(Object key) {
if (key == null)
return getForNullKey();
int hash = hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}



[b]HashMap的resize(rehash):[/b]

当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容。数组扩容之后,原数组中的数据必须重新计算其在新数组中的位置(这比较消耗性能),并放进去,这就是resize。

何时扩容?
当HashMap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

[b]
Fail-Fast机制:
[/b]
java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。
这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。
Iterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
}
在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了map
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
注意到modCount声明为volatile,保证线程之间修改的可见性。

在HashMap的API中指出:
由所有HashMap类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。
注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。
<think>好的,我现在需要详细解释哈希映射(HashMap)的数据结构原理。首先,我得回想一下自己对HashMap的理解,并确保覆盖所有关键点。用户提供的引用内容中提到了哈希表作为底层结构、哈希函数、冲突处理等,这些都是需要涵盖的。 首先,HashMap的基本结构是什么?它基于哈希表,使用数组来存储键值对。哈希函数将键转换为数组的索引,这样可以直接访问对应位置的数据。这里要解释哈希函数的作用,比如将任意大小的数据映射到固定大小的值,作为数组下标。 接下来,哈希冲突是不可避免的,因为不同的键可能生成相同的哈希值。如何处理冲突?常见的方法有开放寻址法和链地址法。根据引用中的内容,用户可能已经提到过链地址法,即每个数组位置是一个链表,存放所有哈希冲突的键值对。需要详细说明这个过程,比如当发生冲突时,将新元素添加到链表中。 然后,需要讨论哈希函数的设计。好的哈希函数应该均匀分布键,以减少冲突。可能提到取模运算,比如用键的哈希值对数组长度取模得到索引。但数组的长度通常选择质数,以减少重复,比如引用中可能提到的。 扩容机制也是一个关键点。当元素数量超过负载因子(比如0.75)时,数组需要扩容,通常翻倍,并重新哈希所有元素到新的数组中。这会影响到性能,但能保持低冲突率。需要解释负载因子的作用和扩容的过程。 另外,时间复杂度方面,理想情况下,插入、删除、查找都是O(1),但最坏情况下(比如所有键冲突)退化为O(n)。所以强调良好的哈希函数和扩容策略的重要性。 可能还需要提到HashMap的应用场景,比如缓存、字典实现等,但用户主要问的是原理,这部分可以简要带过或者放在相关问题里。 现在检查是否有遗漏的部分。引用1提到C语言实现,引用2讲工作原理,引用3提到哈希表和HashMap的实现方法。所以需要综合这些信息,确保覆盖哈希表结构、哈希函数、冲突处理、扩容机制。 需要确保使用正确的中文术语,比如“链地址法”而不是“链表法”。另外,按照系统级指令,行内数学表达式用$...$,比如哈希函数h(key) = key % capacity,这里的公式需要用符号表示,可能需要用LaTeX格式。 在解释过程中,要自然引用提供的引用内容,比如在提到哈希表作为底层结构时引用[^1],在解释哈希函数时引用[^2],在冲突处理时引用[^3]。 最后,生成相关问题,这些问题应该与HashMap原理相关,比如哈希函数设计、冲突处理比较、扩容机制的影响、线程安全等,确保问题有针对性,帮助用户进一步学习。 总结思考步骤: 1. 定义和基本结构:哈希表、键值对存储。 2. 哈希函数的作用和设计。 3. 冲突处理方法,特别是链地址法。 4. 扩容机制和负载因子。 5. 时间复杂度分析。 6. 引用相关文献。 7. 生成相关问题。 现在将这些点组织成连贯的解释,确保符合用户的要求,结构清晰,分点说明,并正确使用格式。</think>### 哈希映射(HashMap)数据结构原理分步解释 #### 1. **基本结构** 哈希映射的核心是**哈希表**,它是一个数组结构,每个位置称为一个“桶”(Bucket)。每个桶存储键值对(Key-Value Pair)的集合。例如,一个容量为10的数组,索引为$0$到$9$,每个索引对应一个桶。 #### 2. **哈希函数** 哈希函数将键(Key)转换为数组索引,公式为: $$ \text{index} = h(\text{key}) \% \text{capacity} $$ 其中$h(\text{key})$是键的哈希值,$\text{capacity}$是数组容量。例如,若键为`"apple"`,哈希值为$1234$,容量为$10$,则索引为$1234 \% 10 = 4$。 **设计要求**: - **均匀分布**:减少冲突概率。 - **高效计算**:时间复杂度为$O(1)$。 #### 3. **冲突处理** 不同键可能产生相同的索引(冲突),常用**链地址法**解决: - 每个桶维护一个链表(或红黑树)。 - 冲突时,新键值对追加到链表末尾。 例如,键`"apple"`和`"banana"`同时映射到索引$4$,则链表存储这两个键值对[^3]。 #### 4. **扩容机制** 当元素数量与容量的比值(负载因子,默认$0.75$)超过阈值时,触发扩容: 1. 新建一个容量翻倍的数组。 2. 重新计算所有键的哈希值并分配到新桶。 此过程保证桶的负载降低,维持$O(1)$操作效率[^3]。 #### 5. **时间复杂度** - **理想情况**:插入、查找、删除均为$O(1)$(无冲突)。 - **最坏情况**:所有键冲突,退化为链表遍历$O(n)$。 优化手段包括使用红黑树(Java 8+)将链表操作优化至$O(\log n)$。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值