利用DeepSeek用排序的列表切片优化集合求解程序

将A保留序号rn=(y-1)*len(n_list)+x-1,bit_value按2^rn计算,将c按rn排序,然后生成式中if c_row[‘bit’] > b_row[1] 条件可以改为for c_row in C[b_row[1]+1:],不做别的。
上述说明有一个错误,b_row[1]是二的幂,而不是序号,导致给出的代码有错,手工改过来了。

def main():
    # with n as (select level n from dual connect by level<=5)
    n_list = [i for i in range(1, 8)]  # level从1开始
    n_size = len(n_list)
    
    # A as (select n1.n x, n2.n y, power(2,rownum-1) bit from n n1,n n2)
    A = []
    for x in n_list:
        for y in n_list:
            rn = (y - 1) * n_size + (x - 1)  # 序号rn=(y-1)*len(n_list)+x-1
            bit_value = 2 ** rn  # bit_value按2^rn计算
            A.append({'x': x, 'y': y, 'bit': bit_value, 'rn': rn})
    
    # 按rn排序A
    A.sort(key=lambda a: a['rn'])
    
    # C as (select a1.bit,a1.x,a1.y, sum(a2.bit) bit2 from a a1,a a2 where (a1.x-a2.x)*(a1.y-a2.y)<=0 group by a1.bit,a1.x,a1.y)
    C = []
    for a1 in A:
        bit2_sum = 0
        for a2 in A:
            if (a1['x'] - a2['x']) * (a1['y'] - a2['y']) <= 0:
                bit2_sum += a2['bit']
        C.append({
            'bit': a1['bit'],
            'x': a1['x'],
            'y': a1['y'],
            'bit2': bit2_sum,
            'rn': a1['rn']
        })
    
    # 按rn排序C
    C.sort(key=lambda c: c['rn'])
    
    # 递归CTE b(cnt,bit,bit2) - 用列表代替字典
    # 初始部分: select 1,c.bit,c.bit2 from c
    b = [[1, c_row['bit'], c_row['bit2'], c_row['rn']] for c_row in C] #用第4个元素保存序号
    
    # 递归部分: 模拟递归CTE
    changed = True
    while changed:
        changed = False
        # 用生成式代替两重for循环,使用切片优化
        new_rows = [
            [b_row[0] + 1, b_row[1] + c_row['bit'], b_row[2] & c_row['bit2'], c_row['rn']]
            for b_row in b
            for c_row in C[b_row[3] + 1:]  # 使用切片代替条件判断
            if (b_row[2] & c_row['bit']) > 0
        ]
        
        if new_rows:
            b = new_rows  # 覆盖而不是扩展
            changed = True
    
    # 找到cnt最大的行: select * from (select b.*,rank() over(order by cnt desc) rnk from b) where rnk=1
    if not b:
        return
    
    max_cnt = max(row[0] for row in b)
    max_rows = [row for row in b if row[0] == max_cnt]
    
    # 为每个最大集合生成点坐标字符串
    results = []
    for r in max_rows:
        points = []
        for a_row in A:
            # where bitand(r.bit, a.bit) > 0
            if r[1] & a_row['bit'] > 0:
                points.append(f"({a_row['x']},{a_row['y']})")
        # listagg within group(order by r.bit) - 这里按bit值排序可能没有意义,改为按坐标排序
        points.sort()
        results.append(''.join(points))
    
    # 输出结果
    print(f"最大集合大小: {max_cnt}")
    print(f"找到 {len(results)} 个最大集合:")
    #for i, result in enumerate(results, 1):
     #   print(f"{i}: {result}")

if __name__ == "__main__":
    main()

大幅度减少了循环次数,只要前一版本1/3的时间。

C:\d>timer64 pypy/pypy sql2py6.py
鏈€澶ч泦鍚堝ぇ灏? 13

鎵惧埌 924 涓渶澶ч泦鍚?



Kernel  Time =     0.046 =   13%
User    Time =     0.296 =   87%
Process Time =     0.343 =  101%    Virtual  Memory =    127 MB
Global  Time =     0.337 =  100%    Physical Memory =    124 MB

C:\d>timer64 pypy/pypy sql2py5.py
鏈€澶ч泦鍚堝ぇ灏? 13

鎵惧埌 924 涓渶澶ч泦鍚?



Kernel  Time =     0.031 =    3%
User    Time =     0.718 =   71%
Process Time =     0.750 =   74%    Virtual  Memory =    114 MB
Global  Time =     1.008 =  100%    Physical Memory =    111 MB


C:\d>timer64 python sql2py6.py
最大集合大小: 13
找到 924 个最大集合:


Kernel  Time =     0.046 =    5%
User    Time =     0.765 =   84%
Process Time =     0.812 =   89%    Virtual  Memory =     99 MB
Global  Time =     0.903 =  100%    Physical Memory =    103 MB

C:\d>timer64 python sql2py5.py
最大集合大小: 13
找到 924 个最大集合:


Kernel  Time =     0.015 =    0%
User    Time =     2.468 =   98%
Process Time =     2.484 =   99%    Virtual  Memory =     96 MB
Global  Time =     2.493 =  100%    Physical Memory =    101 MB
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值