openssl 启用AES NI加速对AES加密性能影响的测试

openssl 默认启用AES NI加速,所以不需要任何设置

openssl speed -elapsed -evp aes-128-cbc
You have chosen to measure elapsed time instead of user CPU time.
Doing AES-128-CBC for 3s on 16 size blocks: 303627501 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 64 size blocks: 91063578 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 256 size blocks: 22911573 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 1024 size blocks: 5818271 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 8192 size blocks: 729244 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 16384 size blocks: 366142 AES-128-CBC's in 3.00s
version: 3.0.2
built on: Wed Feb  5 13:19:41 2025 UTC
options: bn(64,64)
compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -g -O2 -ffile-prefix-map=/build/openssl-rEtvJl/openssl-3.0.2=. -flto=auto -ffat-lto-objects -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -DOPENSSL_TLS_SECURITY_LEVEL=2 -DOPENSSL_USE_NODELETE -DL_ENDIAN -DOPENSSL_PIC -DOPENSSL_BUILDING_OPENSSL -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE=2
CPUINFO: OPENSSL_ia32cap=0xfed83203078bffff:0x405fc6f1bf07a9
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes
AES-128-CBC    1619346.67k  1942689.66k  1955120.90k  1985969.83k  1991322.28k  1999623.51k

如果要禁用AES NI加速,按照openssl文档的说明设置环境变量

OPENSSL_ia32cap="~0x200000200000000" openssl speed -elapsed -evp aes-128-cbc
You have chosen to measure elapsed time instead of user CPU time.
Doing AES-128-CBC for 3s on 16 size blocks: 74485185 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 64 size blocks: 19256192 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 256 size blocks: 4866365 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 1024 size blocks: 1226058 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 8192 size blocks: 153117 AES-128-CBC's in 3.00s
Doing AES-128-CBC for 3s on 16384 size blocks: 76432 AES-128-CBC's in 3.00s
version: 3.0.2
built on: Wed Feb  5 13:19:41 2025 UTC
options: bn(64,64)
compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -g -O2 -ffile-prefix-map=/build/openssl-rEtvJl/openssl-3.0.2=. -flto=auto -ffat-lto-objects -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -DOPENSSL_TLS_SECURITY_LEVEL=2 -DOPENSSL_USE_NODELETE -DL_ENDIAN -DOPENSSL_PIC -DOPENSSL_BUILDING_OPENSSL -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE=2
CPUINFO: OPENSSL_ia32cap=0xfcd83201078bffff:0x0 env:~0x200000200000000
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes
AES-128-CBC     397254.32k   410798.76k   415263.15k   418494.46k   418111.49k   417420.63k

测试结果说明,启用AES NI加速的每秒加密字节数最高1999623.51k,而禁用是418494.46k,差了4倍。

再来看对一个255MB的文件加密用时,AES-128-CBC设置环境变量与否对比sm4-cbc

time openssl aes-128-cbc -e  -K 31323334353637383930313233343536 -iv 31323334353637383930313233343536 -in ENC_NO -out ENC_AES

real    0m11.011s
user    0m0.291s
sys     0m0.646s

time OPENSSL_ia32cap="~0x200000200000000" openssl aes-128-cbc -e  -K 31323334353637383930313233343536 -iv 31323334353637383930313233343536 -in ENC_NO -out ENC_aes

real    0m11.172s
user    0m0.802s
sys     0m0.653s

time openssl sm4-cbc -e  -K 31323334353637383930313233343536 -iv 31323334353637383930313233343536 -in ENC_NO -out ENC_SM4

real    0m13.781s
user    0m1.671s
sys     0m0.638s

两个算法的差距不大。环境变量也没有影响

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值