【数据集+完整源码】电力塔数据集 2986 张,YOLO输电塔识别算法实战训练教程,yolo目标检测电线杆检测,电力作业电力塔识别数据集

文章前瞻:优质数据集与检测系统精选

点击链接:更多数据集与系统目录清单

数据集与检测系统数据集与检测系统
基于深度学习的道路积水检测系统基于深度学习的道路垃圾检测系统
基于深度学习的道路裂缝检测系统基于深度学习的道路交通事故检测系统
基于深度学习的道路病害检测系统基于深度学习的道路积雪结冰检测系统
基于深度学习的汽车车牌检测系统基于深度学习的井盖丢失破损检测系统
基于深度学习的行人车辆检测系统基于深度学习的航拍行人检测系统
基于深度学习的车辆分类检测系统基于深度学习的电动车头盔佩戴检测系统
基于深度学习的交通信号灯检测系统基于深度学习的共享单车违停检测系统
基于深度学习的摆摊占道经营检测系统基于深度学习的人员游泳溺水检测系统
基于深度学习的航拍水面垃圾检测系统基于深度学习的水面垃圾检测系统
基于深度学习的水面船舶分类检测系统基于深度学习的海洋垃圾检测系统
基于深度学习的救生衣穿戴检测系统基于深度学习的海洋生物检测系统
基于深度学习的人员吸烟检测系统基于深度学习的口罩佩戴检测系统
基于深度学习的烟雾和火灾检测系统基于深度学习的人员睡岗玩手机检测系统
基于深度学习的人员摔倒检测系统基于深度学习的人员姿势检测系统(站坐躺摔倒)
基于深度学习的工地安全穿戴检测系统基于深度学习的安全帽检测系统
基于深度学习的反光背心穿戴检测系统基于深度学习的吸烟玩手机行为检测系统
基于深度学习的工地挖掘机检测系统基于深度学习的工地工程车检测系统
基于深度学习的人体手势检测系统基于深度学习的消防灭火器检测系统
基于深度学习的人员高空作业检测系统基于深度学习的水果分类检测系统
基于深度学习的农作物病害检测系统基于深度学习的水稻病害检测系统
基于深度学习的害虫检测系统基于深度学习的蓝莓成熟度检测系统
基于深度学习的草莓成熟度检测系统基于深度学习的食品分类检测系统
基于深度学习的光伏板缺陷检测系统基于深度学习的航拍光伏板检测系统
基于深度学习的建筑垃圾废料检测系统基于深度学习的可回收/不可回收垃圾检测系统
基于深度学习的垃圾分类检测系统基于深度学习的猪只行为动作检测系统
基于深度学习的动物分类检测系统基于深度学习的明厨亮灶鼠患检测系统
基于深度学习的猫狗分类检测系统基于深度学习的服饰分类检测系统
基于深度学习的电动车进电梯检测系统基于深度学习的无人机设备检测系统
基于深度学习的树木倒塌检测系统基于深度学习的电线杆杂物检测系统
基于深度学习的航拍树木检测系统基于深度学习的学生课堂行为检测系统
基于深度学习的家具分类检测系统基于深度学习的武器刀具检测系统

 一、数据集介绍

【数据集】电力塔数据集 2986 张,目标检测,包含YOLO/VOC格式标注。

数据集中包含1种分类names: ['Power-Pole'],代表电力塔(输电塔)。

数据集来自网爬、无人机航拍视频采集;

可用于无人机电力塔检测、电力作业电线杆检测等。

检测场景为工业园区、居民区,山区、河流旁等复杂地形的场景,可用于电力日常巡检效率提升、隐患精准识别、电力运维规划辅助等。

文章底部或主页私信获取数据集~

1、数据概述

输电塔识别的重要性

电力塔是高压输电网络的关键载体,直接支撑着区域电力输送安全,一旦因塔身损伤、部件缺失或周边隐患引发故障,可能导致大面积停电,影响工业生产与居民生活。但传统电力塔检测存在显著短板:人工巡检依赖人员现场勘查,面对山区、河流旁等复杂地形时,不仅通行困难、效率低下,还存在高空作业风险;部分隐蔽隐患(如塔身细微倾斜、螺栓缺失)难以通过肉眼发现,易延误维护时机,埋下安全隐患。​

YOLO 算法凭借 “实时目标检测 + 精准定位” 的优势,有效破解上述难题:其一,可结合无人机航拍或沿线监控设备,快速覆盖大范围电力塔群,无需人工深入复杂区域,大幅降低巡检风险与人力成本;其二,对电力塔主体、绝缘子、塔基等关键部位的识别精度高,能精准捕捉塔身倾斜、部件缺损等隐患,甚至发现肉眼难以察觉的细微异常;其三,检测结果可实时同步至电力运维平台,实现 “隐患即发现、信息即传递”,为及时开展维护提供关键支撑,是推动电力运维从 “人工巡查” 向 “智能监测” 转型的核心技术。

基于YOLO的电力塔识别算法

  1. 日常巡检效率提升:YOLO 通过无人机或监控设备自动识别电力塔位置与状态,替代人工逐塔勘查,可快速完成跨区域、大规模塔群巡检,显著减少巡检耗时,同时避免人员在恶劣环境下的作业风险,保障运维人员安全。​

  2. 运维规划辅助:通过长期积累的电力塔检测数据,YOLO 可协助运维部门分析塔群老化趋势、高频隐患类型,为制定针对性维护计划(如重点区域加固、易损部件定期更换)提供数据支持,提升运维工作的前瞻性与科学性。

  3. 灾害后快速评估:在暴雨、台风等自然灾害后,电力塔易出现倒塌、损毁等问题,YOLO 可通过无人机快速航拍受灾区域,自动识别受损电力塔位置与损毁程度,辅助运维团队快速掌握灾情,优先调配资源修复关键塔体,缩短停电恢复时间。​

  4. 隐患精准识别:算法能精准检测塔身结构异常(如倾斜、变形)、部件缺失(如绝缘子脱落、螺栓松动)及周边风险(如树木靠近、异物缠绕),有效减少人工漏检情况,帮助运维人员提前发现潜在隐患,避免故障发生。​

该数据集含有 2986 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试工业园区、居民区,山区、河流旁等复杂地形​​​​​​​的场景进行输电塔识别

图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

2、数据集文件结构

Power-Pole/

——test/

————Annotations/

————images/

————labels/

——train/

————Annotations/

————images/

————labels/

——valid/

————Annotations/

————images/

————labels/

——data.yaml

  • 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含电力塔检测的目标分类和加载路径。

  ​

  ​

  ​

Annotations目录下的xml文件内容如下:

<?xml version='1.0' encoding='utf-8'?>
<annotation>
	<folder />
	<filename>istockphoto-1278329913-2048x2048_jpg.rf.93169a8959f252ba52561a200414244d.jpg</filename>
	<path>istockphoto-1278329913-2048x2048_jpg.rf.93169a8959f252ba52561a200414244d.jpg</path>
	<source>
		<database>Power-Pole</database>
	</source>
	<size>
		<width>640</width>
		<height>640</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>Power-Pole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>272</xmin>
			<xmax>414</xmax>
			<ymin>194</ymin>
			<ymax>490</ymax>
		</bndbox>
	</object>
	<object>
		<name>Power-Pole</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>235</xmin>
			<xmax>262</xmax>
			<ymin>152</ymin>
			<ymax>267</ymax>
		</bndbox>
	</object>
	<metadata>
	</metadata>
</annotation>

labels目录下的txt文件内容如下:

0 0.565625 0.39140625 0.16015625 0.4953125

3、数据集适用范围 

  • 目标检测场景,电力监控巡检
  • yolo训练模型或其他模型
  • 工业园区、居民区,山区、河流旁等复杂地形​​​​​​​的场景
  • 可用于电力日常巡检效率提升​​​​​​​、隐患精准识别、电力运维规划辅助等。

4、数据集标注结果 

​​​​

4.1、数据集内容 

  1. 多角度场景:行人视角样本、无人机视角样本、监控视角样本;
  2. 标注内容:names: ['Power-Pole'],总计1个分类;
  3. 图片总量:2986 张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

5、训练过程

5.1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

​​

5.2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import random

trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

5.3、数据集格式化处理

在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['Power-Pole'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

5.4、修改数据集配置文件

在ultralytics-main目录下创建一个data.yaml文件

train: data/train.txt
val: data/val.txt
test: data/test.txt

nc: 1
names: ['Power-Pole']

5.5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

5.6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径

# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) 

# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        # results = model(frame)
        results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)

        results[0].names[0] = "道路积水"
        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Write the annotated frame to the output file
        out.write(annotated_frame)

        # Display the annotated frame (optional)
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

6、获取数据集 

文章底部或主页私信获取数据集~

二、YOLO电线杆检测系统

1、功能介绍

1. 模型管理

支持自定义上传模型文件,一键加载所选模型,基于 YOLO 框架进行推理。

2. 图片检测

    - 支持上传本地图片文件,自动完成格式校验。

    - 对上传图片进行目标检测,检测结果以带有边框和标签的图片形式返回并展示。

    - 检测结果可下载保存。

3. 视频检测与实时流

    - 支持上传本地视频文件,自动完成格式校验。

    - 对视频逐帧检测,检测结果通过 MJPEG 流实时推送到前端页面,用户可边看边等。

    - 支持摄像头实时检测(如有接入摄像头)。

4. 置信度阈值调节

    - 前端可实时调整检测置信度阈值,动态影响检测结果。

    - 阈值调整后,后端推理自动应用新阈值,无需重启。

5. 日志与状态反馈

    - 前端集成日志区,实时显示模型加载、推理、文件上传等操作的进度与结果。

    - 检测异常、错误信息及时反馈,便于排查。

    - 一键清空日志,笔面长期占用内存。

2、创建环境并安装依赖:

conda create -n ultralytics-env python=3.10
conda activate ultralytics-env
pip install -r requirements.txt

3、启动项目

python app.py

打开浏览器访问:http://localhost:5000

4、效果展示

4.1、推理效果

以红绿灯为例:(详情效果如下)

4.2、日志文本框

4.3、摄像头检测

5、前端核心页面代码

<!doctype html>
<html lang="zh-CN">

<head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width,initial-scale=1">
    <title>视觉检测系统 - Web UI</title>
    <link rel="stylesheet" href="/static/style.css">
    <link rel="icon" href="/favicon.ico">
</head>

<body>
    <div class="container main-flex">
        <!-- 左侧内容区 -->
        <div class="left-content">
            <header>
                <h1>YOLO电线杆检测系统</h1>
                <div id="currentModelDisplay" class="modelDisplay" title="当前模型">当前模型:未上传模型</div>
            </header>
            <main>
                <div class="videoPanel">
                    <div class="pane">
                        <h3>原图 / 视频</h3>
                        <div class="preview" id="srcPreview">预览区</div>
                    </div>
                    <div class="pane">
                        <h3>检测结果</h3>
                        <div class="preview" id="detPreview">检测结果</div>
                    </div>
                </div>
                <section class="logArea">
                    <div class="logHeader">
                        <h3>日志</h3>
                    </div>
                    <div class="logInner">
                        <div id="logs" class="logs"></div>
                    </div>
                </section>
            </main>
        </div>
        <!-- 右侧按钮栏 -->
        <aside class="right-bar">
            <!-- 1. 模型上传/加载区 -->
            <section class="model-section">
                <button id="uploadModelBtn" class="ghost">上传模型
                    <input id="modelFileInput" type="file" accept=".pt" title="选择 .pt 模型文件">
                </button>
                <button id="loadModel">加载模型</button>
            </section>

            <!-- 2. 检测方式选择区 -->
            <section class="detect-mode-section">
                <div class="detect-mode-title">请选择检测方式</div>
                <div class="detect-mode-radio-group">
                    <label><input type="radio" name="detectMode" value="upload" checked> 图片/视频</label>
                    <label><input type="radio" name="detectMode" value="camera"> 摄像头</label>
                </div>
                <div id="detectModeUpload" class="detect-mode-panel">
                    <div class="uploaded-file-name">
                        <span id="uploadedFileName" class="placeholder">未选择文件</span>
                    </div>
                    <div style="height: 22px;"></div>
                    <button id="uploadBtn">上传文件
                        <input id="fileInput" type="file" accept="image/*,video/*" title="上传图片或视频" aria-label="上传图片或视频">
                    </button>
                </div>
                <div id="detectModeCamera" class="detect-mode-panel" style="display:none;">
                    <button id="cameraDetectBtn" class="ghost">开启摄像头</button>
                    <div id="cameraPreview" class="camera-preview">
                        <video id="localCameraVideo" autoplay muted playsinline></video>
                        <div class="camera-controls">
                            <button id="stopCameraBtn" class="ghost">关闭摄像头</button>
                        </div>
                    </div>
                </div>
                <div class="confWrap">
                    <label class="conf">置信度
                        <input id="confRange" type="range" min="0.01" max="0.99" step="0.01" value="0.5">
                        <input id="confValue" type="number" min="0.01" max="0.99" step="0.01" value="0.5">
                    </label>
                </div>
            </section>

            <!-- 3. 操作按钮区 -->
            <section class="action-btn-section">
                <button id="startBtn" disabled class="start">开始检测</button>
                <button id="stopBtn" disabled class="stop">停止</button>
                <button id="clearLogs" class="ghost">清空日志</button>
            </section>
        </aside>
    </div>
    <script src="/static/app.js"></script>
</body>

</html>

6、代码获取

文章底部名片或私信获取系统源码和数据集~

更多数据集请查看

以上内容均为原创。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV小涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值