from pandas import read_csv
from pandas import datetime
from pandas import Series
from matplotlib import pyplot
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
X = series.values
diff = difference(X)
pyplot.plot(diff)
pyplot.show()
手动差分--默认是剪去上一个
差分之前
差分之后
2.自动差分
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
diff = series.diff()
pyplot.plot(diff)
pyplot.show()
还是默认1.可以手动设置
https://machinelearningmastery.com/difference-time-series-dataset-python/
时间序列差分详解
本文详细介绍了使用Python进行时间序列数据差分的方法,包括手动差分和自动差分的实现过程,展示了差分前后的数据变化,适用于处理具有趋势或季节性的数据集。
7710

被折叠的 条评论
为什么被折叠?



