处理缺失值

本文介绍使用 Python 的 Pandas 库进行数据预处理的方法,重点讲解如何检测、统计和处理缺失值。包括标记缺失值、统计每列缺失值数量、删除含有缺失值的行或列等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • df.isnull()#是缺失值返回True,否则范围False
  • df.isnull().sum()#返回每列包含的缺失值的个数
  • df.dropna()#直接删除含有缺失值的行
  • df.dropna(axis = 1)#直接删除含有缺失值的列
  • df.dropna(how = 'all')#只删除全是缺失值的行
  • df.dropna(thresh = 4)#保留至少有4个缺失值的行
  • df.dropna(subset = ['C'])#删除含有缺失值的特定的列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值