torch.backends.cudnn.deterministic 使用cuda保证每次结果一样

本文详细介绍了如何在PyTorch中控制随机性,以确保实验结果的可复现性。通过固定随机数种子、设置Torch的随机种子以及控制cuda和cudnn的行为,可以使得在相同的输入下,模型的输出保持一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么使用相同的网络结构,跑出来的效果完全不同,用的学习率,迭代次数,batch size 都是一样?固定随机数种子是非常重要的。但是如果你使用的是PyTorch等框架,还要看一下框架的种子是否固定了。还有,如果你用了cuda,别忘了cuda的随机数种子。这里还需要用到torch.backends.cudnn.deterministic.

torch.backends.cudnn.deterministic是啥?顾名思义,将这个 flag 置为True的话,每次返回的卷积算法将是确定的,即默认算法。如果配合上设置 Torch 的随机种子为固定值的话,应该可以保证每次运行网络的时候相同输入的输出是固定的,代码大致这样

def init_seeds(seed=0):
torch.manual_seed(seed) # sets the seed for generating random numbers.
torch.cuda.manual_seed(seed) # Sets the seed for generating random numbers for the current GPU. It’s safe to call this function if CUDA is not available; in that case, it is silently ignored.
torch.cuda.manual_seed_all(seed) # Sets the seed for generating random numbers on all GPUs. It’s safe to call this function if CUDA is not available; in that case, it is silently ignored.

if seed == 0:
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值