TF.VARIABLE和TENSOR的区别(转)

部署运行你感兴趣的模型镜像
刷课过程中思考到Variable和Tensor之间的区别,尝试发现在如下代码中: a = tf.Variable(tf.ones(1)) b = tf.add(a,tf.ones(1)) 1 2 a是Variable,而b是Tensor。发现自己对Variable和Tensor之间的区分了解不多,所以搜索了一下,记录自己的思考,欢迎指教。 Variable是可更改的(mutable),而Tensor是不可更改的。一个直接的例子就是Tensor不具有assign函数,而Variable含有。 python和其他语言的API以及实现方式存在差异,本文只探讨general以及python方面的内容。 Variable用于存储网络中的权重矩阵等变量,而Tensor更多的是中间结果等。 Variable是会显示分配内存空间的(既可以是内存,也可以是显存),需要初始化操作(assign一个tensor),由Session管理,可以进行存储、读取、更改等操作。相反地,诸如Const, Zeros等操作创造的Tensor,是记录在Graph中,所以没有单独的内存空间;而其他未知的由其他Tensor操作得来的Tensor则是只会在程序运行中间出现。 Tensor可以使用的地方,几乎都可以使用Variable。 参考资料: https://stackoverflow.com/questions/37849322/how-to-understand-the-term-tensor-in-tensorflow https://stackoverflow.com/questions/40866675/implementation-difference-between-tensorflow-variable-and-tensorflow-tensor https://stackoverflow.com/questions/38556078/in-tensorflow-what-is-the-difference-between-a-variable-and-a-tensor https://www.tensorflow.org/programmers_guide/variables https://www.tensorflow.org/api_docs/python/tf/Variable --------------------- 作者:silent56_th 来源:优快云 原文:https://blog.youkuaiyun.com/silent56_th/article/details/75577974?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接!
 
 
标签:  tensorflow

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

【无线传感器】使用 MATLAB XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文围绕使用MATLABXBee技术实现温度传感器无线网络的连续监控展开研究,介绍了如何构建无线传感网络系统,并利用MATLAB进行数据采集、处理与可视化分析。系统通过XBee模块实现传感器节点间的无线通信,实时传输温度数据至主机,MATLAB负责接收并处理数据,实现对环境温度的动态监测。文中详细阐述了硬件连接、通信协议配置、数据解析及软件编程实现过程,并提供了完整的MATLAB代码示例,便于读者复现应用。该方案具有良好的扩展性实用性,适用于远程环境监测场景。; 适合人群:具备一定MATLAB编程基础无线通信基础知识的高校学生、科研人员及工程技术人员,尤其适合从事物联网、传感器网络相关项目开发的初学者与中级开发者。; 使用场景及目标:①实现基于XBee的无线温度传感网络搭建;②掌握MATLAB与无线模块的数据通信方法;③完成实时数据采集、处理与可视化;④为环境监测、工业测控等实际应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的MATLAB代码与硬件连接图进行实践操作,先从简单的点对点通信入手,逐步扩展到多节点网络,同时可进一步探索数据滤波、异常检测、远程报警等功能的集成。
内容概要:本文系统讲解了边缘AI模型部署与优化的完整流程,涵盖核心挑战(算力、功耗、实时性、资源限制)与设计原则,详细对比主流边缘AI芯片平台(如ESP32-S3、RK3588、Jetson系列、Coral等)的性能参数与适用场景,并以RK3588部署YOLOv8为例,演示从PyTorch模型导出、ONNX换、RKNN量化到Tengine推理的全流程。文章重点介绍多维度优化策略,包括模型轻量化(结构选择、输入尺寸调整)、量化(INT8/FP16)、剪枝与蒸馏、算子融合、批处理、硬件加速预处理及DVFS动态调频等,显著提升帧率并降低功耗。通过三个实战案例验证优化效果,最后提供常见问题解决方案与未来技术趋势。; 适合人群:具备一定AI模型开发经验的工程师,尤其是从事边缘计算、嵌入式AI、计算机视觉应用研发的技术人员,工作年限建议1-5年;熟悉Python、C++及深度学习框架(如PyTorch、TensorFlow)者更佳。; 使用场景及目标:①在资源受限的边缘设备上高效部署AI模型;②实现高帧率与低功耗的双重优化目标;③掌握从芯片选型、模型换到系统级调优的全链路能力;④解决实际部署中的精度损失、内存溢出、NPU利用率低等问题。; 阅读建议:建议结合文中提供的代码实例与工具链(如RKNN Toolkit、Tengine、TensorRT)动手实践,重点关注量化校准、模型压缩与硬件协同优化环节,同时参考选型表格匹配具体应用场景,并利用功耗监测工具进行闭环调优。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值