树莓派3B+ 人脸识别(OpenCV)

本文介绍如何在树莓派上利用OpenCV进行人脸识别,包括生成人脸识别数据、创建数据对应表及人脸识别的具体步骤。提供了完整的Python脚本示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树莓派3B+ 人脸识别(OpenCV)


相信大家都看了前面的OpenCV安装人脸检测教程,已经跃跃欲试,想要进行人脸识别了,现在我们正式进入重头戏——人脸识别 的教程。
注意:该教程面向python2.7+OpenCV2.4.9(官方源)
其它版本需进行一些小的修改,文中会具体注明。

1.生成人脸识别数据

目录结构
./data 数据根目录
./data/generate 自动生成的人脸数据
./data/datamap.csv 人脸数据对应数据
./data/Mengcheng 人物一文件夹
./data/Kaixin 人物二文件夹
./data/Mengying 人物三文件夹
(这里三个人物可自行修改,文件夹为人物名,里面存放图片)

dir

// python脚本,请保存为genrate.py
#!/usr/bin/env python
#coding=utf-8
import cv2
import os  
import sys

face_cascade=cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml')

def makedir(path):
    path=path.strip().rstrip('/')
    if os.path.exists(path) is False:
        os.makedirs( path );

def generate(root_argv,dirname):
    subject_dir_path = os.path.join(root_argv, dirname)
    print 'seek:'+subject_dir_path
    count=0
    for filename in os.listdir(subject_dir_path): 
        if filename == ".directory":
            continue
        imgPath = os.path.join(subject_dir_path, filename)
        try:
            print 'read:'+imgPath
            img = cv2.imread(imgPath)
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            outdir=os.path.join(root_argv,'generate',dirname)
            makedir(outdir)
            faces=face_cascade.detectMultiScale(gray,1.3,5)
            for x,y,w,h in faces:
                f=cv2.resize(gray[y:y+h,x:x+w],(200,200))
                outPath=os.path.join(root_argv,'generate',dirname,'%s.pgm' % str(count))
                print 'write:'+ outPath
                cv2.imwrite(outPath, f)
                count+=1

        except:
            pass


if __name__ == '__main__':
    if len(sys.argv)==1:
        print ("USAGE: generate.py <人脸图片存放路径>")
        exit(0)

    root_argv=sys.argv[1]
    for dirname in os.listdir(root_argv):
        file_path = os.path.join(root_argv, dirname)  
        if os.path.isdir(file_path): 
            if dirname == 'generate':
                continue
            generate(root_argv,dirname)

在控制台执行python generate.py ./data即可自动生成人脸识别数据
生成后,请自行打开./data/generate/下生成人脸数据是否正常,如果不正常的,请清理掉,防止后续有干扰。如图:

这里写图片描述

2.生成人脸数据对应表

人脸数据生成了,还得有一个人物<->名称映射表,让机器知道人脸数据对应那个人物。

// python脚本,请保存为create_csv.py
#!/usr/bin/env python
#coding=utf-8
import sys
import os.path
#import Image
if __name__ == '__main__':
    if len(sys.argv) != 2:
        print "usage: create_csv.py <生成的人脸数据路径>"
        sys.exit(0)

    BASE_PATH=sys.argv[1]
    SEPARATOR=";"
    label = 0
    for dirpath, dirnames, filenames in os.walk(BASE_PATH): 
        for subdirname in dirnames:
            subject_path = os.path.join(dirpath, subdirname) 
            #print subject_path
            for filename in os.listdir(subject_path):
                image_filename = subject_path + "/"+ filename 
                #print(image_filename) 
                #img=Image.open(image_filename)
                ##  img=img.resize((92,112))
                #img.show()
                abs_path = "%s/%s" % (subject_path, filename) 
                print("%s%s%d"%(abs_path,SEPARATOR, label))
                # print("%s"%(abs_path)) 
            label = label + 1

然后执行python create_csv.py ./data/generate/ > ./data/datamap.csv
打开生成的datamap.csv文件,检查对应关系(如图所示):

datamap.csv

这样,人脸数据就准备好了。

3.人脸识别

使用样图,使用树莓派摄像头获取图片。

// python脚本,请保存为facerec.py
#!/usr/bin/env python
#coding=utf-8
### Imports ###################################################################

import multiprocessing as mp
import cv2
import os
import sys
import time
import numpy as np


### Setup #####################################################################

resX = 640
resY = 480

# The face cascade file to be used
face_cascade = cv2.CascadeClassifier('/usr/share/opencv/lbpcascades/lbpcascade_frontalface.xml')

#三种识别算法
#model = cv2.createEigenFaceRecognizer()
model = cv2.createFisherFaceRecognizer()
#model = cv2.createLBPHFaceRecognizer()

t_start = time.time()
fps = 0


### Helper Functions ##########################################################

def normalize(X, low, high, dtype=None):
    """Normalizes a given array in X to a value between low and high."""
    X = np.asarray(X)
    minX, maxX = np.min(X), np.max(X)
    # normalize to [0...1].
    X = X - float(minX)
    X = X / float((maxX - minX))
    # scale to [low...high].
    X = X * (high-low)
    X = X + low
    if dtype is None:
        return np.asarray(X)
    return np.asarray(X, dtype=dtype)


def load_images(path, sz=None):
    c = 0
    X,y = [], []
    for dirname, dirnames, filenames in os.walk(path):
        for subdirname in dirnames:
            subject_path = os.path.join(dirname, subdirname)
            for filename in os.listdir(subject_path):
                try:
                    filepath = os.path.join(subject_path, filename)
                    if os.path.isdir(filepath):
                        continue
                    img = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)
                    if (img is None):
                        print ("image " + filepath + " is none")
                    else:
                        print (filepath)
                    # resize to given size (if given)
                    if (sz is not None):
                        img = cv2.resize(img, (200, 200))

                    X.append(np.asarray(img, dtype=np.uint8))
                    y.append(c)
                # except IOError, (errno, strerror):
                #     print ("I/O error({0}): {1}".format(errno, strerror))
                except:
                    print ("Unexpected error:", sys.exc_info()[0])
                    raise
            print (c)
            c = c+1


    print (y)
    return [X,y]

def get_faces( img ):

    gray = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY )
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    return faces, img, gray

def draw_frame( faces, img, gray ):

    global xdeg
    global ydeg
    global fps
    global time_t

    # Draw a rectangle around every face
    for ( x, y, w, h ) in faces:

        cv2.rectangle( img, ( x, y ),( x + w, y + h ), ( 200, 255, 0 ), 2 )
        #-----rec-face
        roi = gray[x:x+w, y:y+h]
        try:
            roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR)
            params = model.predict(roi)
            sign=("%s %.2f" % (names[params[0]], params[1]))
            cv2.putText(img, sign, (x, y-2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )
            if (params[0] == 0):
                cv2.imwrite('face_rec.jpg', img)
        except:
            continue


    # Calculate and show the FPS
    fps = fps + 1
    sfps = fps / (time.time() - t_start)
    cv2.putText(img, "FPS : " + str( int( sfps ) ), ( 10, 15 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

    cv2.imshow( "recognize-face", img )


### Main ######################################################################

if __name__ == '__main__':

    camera = cv2.VideoCapture(0)
    camera.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,resX)  
    camera.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,resY) 

    pool = mp.Pool( processes=4 )

    # -----------init-rec----------
    # 人名要与datamap.csv里面的对应,不要弄错了顺序
    names = ['Mengying', 'Kaixin', 'Mengcheng']
    if len(sys.argv) < 2:
        print ("USAGE: facerec.py <人脸数据存放路径> [<数据对应表>]")
        sys.exit()

    [X,y] = load_images(sys.argv[1])
    y = np.asarray(y, dtype=np.int32)

    if len(sys.argv) == 3:
        out_dir = sys.argv[2]

    model.train(np.asarray(X), np.asarray(y))
    # ------init finish---------

    read, img = camera.read()
    pr1 = pool.apply_async( get_faces, [ img ] )   
    read, img = camera.read()
    pr2 = pool.apply_async( get_faces, [ img ] )  
    read, img = camera.read() 
    pr3 = pool.apply_async( get_faces, [ img ] )   
    read, img = camera.read()
    pr4 = pool.apply_async( get_faces, [ img ] )    

    fcount = 1
    while (True):
        read, img = camera.read()

        if   fcount == 1:
            pr1 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr2.get()
            draw_frame( faces, img, gray )

        elif fcount == 2:
            pr2 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr3.get()
            draw_frame( faces, img, gray )

        elif fcount == 3:
            pr3 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr4.get()
            draw_frame( faces, img, gray )

        elif fcount == 4:
            pr4 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr1.get()
            draw_frame( faces, img, gray )
            fcount = 0

        fcount += 1

        if cv2.waitKey(1000 // 12) & 0xff == ord("q"):
            break

    camera.release()
    cv2.destroyAllWindows()

注意:这里对于OpenCV3的版本需要修改如下内容:
cv2.createEigenFaceRecognizer()
—>cv2.face.createEigenFaceRecognizer()
cv2.rectangle()
—>img=cv2.rectangle()


然后执行python facerec.py ./data/generate ./data/datamap.csv,此时,摄像头会自动打开,在显示屏上可以看到画面,如图:

result

如果想测试得更理想,应选择脸型差别比较大的来测试,其次是素材高清一些,摄像头成像清晰一些。

4.扩展资料

对于OpenCV有三种人脸识别方法,它们分别基于三种不同的算法:Eigenfaces、Fisherfaces和Local Binary Pattern Histogram(LBPH)。

首先,所有的方法都有类似的过积,即都使用了分好类的训练数据集(人脸数据库,每 个人都有很多样本)来进行“训练”,对图像或视频中检测到的人脸进行分析,并从两方面来确定:是否识别到目标,目标真正被识别到的置信度的度量,这也称为置信度评分。

  • Eigenfaces是通过PCA来处理的。PCA是计算机视觉中提到最多的数学概。PCA的本质是识别某个训练集上(比如人脸数据库)的主成分,并计算出训练集(图像或帧中检测到的人脸)相对于数据库的发散程度,并输出一个值。该值越小,表明人脸数据库和检测到的人脸之间差别就越小;0值表示完全匹配。

  • Fisherfaces是从PCA衍生并发展起来的概念,它采用更复杂的逻辑。尽管计算更加密集,但比Eigenfaces更容易得到准确的效果。

  • LBPH粗略地(在非常高的层次上)将检测到的人脸分成小单元,并将其与模型中的对应单元进行比较,对每个区域的匹配值产生一个直方图。由于这种方法的灵活性.LBPH是唯一允许模型样本人脸和检测到的人脸在形状、大小上可以不同的人脸识别算法。个人认为这是最准确的算法,但是每个算法都有其长处和缺点。

5.扩展书籍

看较多网友对此文章有较多疑问,但我也没有较深入去研究具体原理。故无法对你们的提问作出准确的解答,在此推荐一本书给大家,相信能化解你们的疑问![本文章代码也有部分来自此书]
OpenCV 3计算机视觉 Python语言实现(第二版)

### 树莓派OpenCV结合实现人脸识别门禁系统的课程设计资料与教程 树莓派OpenCV结合实现人脸识别门禁系统是一个非常流行的项目,它涉及硬件配置、软件开发以及算法应用等多个方面。以下将详细介绍相关的课程设计资料与教程内容。 #### 1. 硬件与软件环境配置 在开始开发之前,需要确保硬件和软件环境已经正确配置。根据已有资料[^1],以下是推荐的开发环境: - **硬件**:树莓派3B+。 - **操作系统**:Raspbian Stretch Full(镜像版本:2019-04-08-raspbian-stretch-full.img)。 - **软件**: - Python 2.7(尽管Python 3更为现代,但部分教程仍基于Python 2.7)。 - OpenCV 3.4.0(或其他兼容版本)。 - PyQt5(用于图形界面开发)。 - **显示设备**:HDMI显示屏,建议分辨率为1280x800。 #### 2. 人脸识别的核心技术 人脸识别通常依赖于特征提取和分类器训练。在树莓派上,常用的实现方式是使用OpenCV自带的Haar特征分类器[^2]。以下是核心代码示例: ```python import cv2 # 初始化摄像头 cap = cv2.VideoCapture(0) # 加载Haar特征分类器 cascadePath = "/home/pi/opencv-3.4.3/data/haarcascades/haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascadePath) while True: # 捕获帧 ret, img = cap.read() # 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = faceCascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5) # 绘制矩形框 for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) # 显示结果 cv2.imshow("Face Detection", img) # 按下 &#39;q&#39; 键退出 if cv2.waitKey(1) & 0xFF == ord(&#39;q&#39;): break # 释放资源 cap.release() cv2.destroyAllWindows() ``` 上述代码实现了基本的人脸检测功能[^2],通过捕获视频流并使用Haar特征分类器检测人脸位置。 #### 3. 进一步扩展:人脸识别与门禁控制 为了实现完整的门禁系统,可以考虑以下扩展功能: - **人脸识别模型训练**:使用LBPH(Local Binary Patterns Histograms)或其他更先进的深度学习模型(如FaceNet或Dlib中的dlib_face_recognition_resnet_model_v1)进行人脸识别。 - **数据库存储**:将已知人脸的特征向量存储在SQLite或其他轻量级数据库中。 - **GPIO控制**:利用树莓派的GPIO接口连接继电器模块,实现门锁的自动开启和关闭。 #### 4. 推荐的课程设计资料与教程 以下是几个推荐的学习资源和教程: - **官方文档**:OpenCV官方文档提供了丰富的API说明和示例代码[^3]。 - **在线教程**:网站如GeeksforGeeks、TutorialsPoint等提供了详细的树莓派OpenCV结合的教程。 - **书籍推荐**: - 《Programming Computer Vision with Python》。 - 《Mastering OpenCV with Practical Computer Vision Projects》。 - **GitHub项目**:搜索“Raspberry Pi Face Recognition”关键词,可以找到许多开源项目作为参考。 #### 5. 注意事项 在实际开发过程中,需要注意以下几点: - 确保摄像头能够正常工作,并调整光线条件以提高识别准确率。 - 如果使用深度学习模型,可能需要更强的计算能力,可以通过树莓派GPU加速或云端推理解决。 - 测试阶段应充分验证系统的稳定性和鲁棒性。 ---
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值