打造智能语义层:为图数据库添加语义层的实用指南

引言

在当今数据驱动的世界中,图数据库如Neo4j因其强大的数据建模能力而备受欢迎。然而,为了更智能地提取和展示数据,我们可以在图数据库之上添加一个语义层,使其更具智能和可操作性。在这篇文章中,我将演示如何使用大语言模型(LLM)和Cypher模板为Neo4j图数据库添加一个语义层。

主要内容

理解语义层的优势

语义层通过提供易用的查询接口,使得非技术用户也能轻松获取所需的信息。相比直接生成Cypher查询,此方法更可靠,因为它使用预定义的查询模板,减少了生成错误查询的风险。

安装和设置

首先,确保安装必要的软件包并配置环境变量:

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

然后配置API密钥和Neo4j数据库连接信息:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

数据库初始化

接下来,我们将连接Neo4j数据库,并导入一些关于电影的信息:

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)

实现自定义工具和语义层

我们将定义Cypher模板,并实现一个工具来获取电影或演员的信息:

description_query = """
MATCH (m:Movie|Person)
WHERE m.title CONTAINS $candidate OR m.name CONTAINS $candidate
MATCH (m)-[r:ACTED_IN|HAS_GENRE]-(t)
WITH m, type(r) as type, collect(coalesce(t.name, t.title)) as names
WITH m, type+": "+reduce(s="", n IN names | s + n + ", ") as types
WITH m, collect(types) as contexts
WITH m, "type:" + labels(m)[0] + "\ntitle: "+ coalesce(m.title, m.name) 
       + "\nyear: "+coalesce(m.released,"") +"\n" +
       reduce(s="", c in contexts | s + substring(c, 0, size(c)-2) +"\n") as context
RETURN context LIMIT 1
"""

def get_information(entity: str) -> str:
    try:
        data = graph.query(description_query, params={"candidate": entity})
        return data[0]["context"]
    except IndexError:
        return "No information was found"

这个工具将与LLM结合,以便在需要时提供信息。

使用OpenAI Agent进行交互

接着,我们使用LangChain的Agent系统来实现与图数据库的交互:

from langchain.agents import AgentExecutor
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
tools = [InformationTool()]

prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant that finds information about movies and recommends them."),
    MessagesPlaceholder(variable_name="chat_history"),
    ("user", "{input}"),
    MessagesPlaceholder(variable_name="agent_scratchpad"),
])

agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

代码示例

以下是一个完整的代码示例,用于查询电影《Casino》的演员:

agent_executor.invoke({"input": "Who played in Casino?"})

常见问题和解决方案

  • 网络限制问题:某些地区可能存在网络访问限制,影响API的使用。开发者可以考虑使用API代理服务来提高访问稳定性。
  • 数据不完整:如果在显示信息时发现数据不准确,可以检查数据库的数据导入步骤,确保CSV文件和Cypher查询的正确性。

总结与进一步学习资源

通过为图数据库添加语义层,我们提供了一种更智能,更可靠的查询解决方案。想要深入了解,请参考以下资源:

参考资料

  1. Neo4j Documentation: https://neo4j.com/docs/
  2. LangChain Documentation: https://langchain.com/docs/
  3. OpenAI API Guide: https://beta.openai.com/docs/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值