Pytorch学习笔记(六)

本文介绍了ResNet为何能解决深度学习中梯度消失问题,其通过引入残差网络结构,允许网络达到上千层仍能有效训练。并展示了使用Pytorch实现ResNet的示例及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(10)使用Pytorch实现ResNet
ResNet要解决的问题
深度学习网络的深度对最后的分类和识别的效果有着很大的影响,所以正常想法就是能把网络设计的越深越好,但是事实上却不是这样,常规的网络的堆叠(plain network)在网络很深的时候,效果却越来越差了。
其中的原因之一即是网络越深,梯度消失的现象就越来越明显,网络的训练效果也不会很好。 但是现在浅层的网络(shallower network)又无法明显提升网络的识别效果了,所以现在要解决的问题就是怎样在加深网络的情况下又解决梯度消失的问题。

ResNet的解决方案
ResNet引入了残差网络结构(residual network),通过残差网络,可以把网络层弄的很深,据说现在达到了1000多层,最终的网络分类的效果也是非常好,残差网络的基本结构如下图所示
这里写图片描述

ResNet通过在输出个输入之间引入一个shortcut connection,而不是简单的堆叠网络,这样可以解决网络由于很深出现梯度消失的问题,从而可可以把网络做的很深,ResNet其中一个网络结构如下图所示
这里写图片描述
下面用Pytorch来实现ResNet:

# -*- coding:utf-8 -*-
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable

# Image Preprocessing
transform = transforms.Compose([
    transforms.Scale(40),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])

# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='./data/',
                              train=True,
                              transform=transform,
                              download=True)

test_dataset = dsets.CIFAR10(root='./data/',
                             train=False,
                             transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=100,
  
### PyTorch 学习笔记概述 李毅编写的《PyTorch学习笔记》是一份详尽的学习指南,旨在帮助读者掌握深度学习框架PyTorch的核心概念和技术。这份笔记不仅涵盖了基础理论知识,还提供了大量实践案例和代码实现。 #### 主要内容结构 1. **环境搭建** 安装配置PyTorch运行所需的软件环境,包括Python版本的选择、CUDA支持以及Anaconda的使用方法[^2]。 2. **张量操作** 解释了如何创建、转换和处理多维数组(即张量),这是构建神经网络模型的基础构件之一[^3]. 3. **自动求导机制** 描述了Autograd模块的工作原理及其在反向传播算法中的应用,使用户能够轻松定义复杂的计算图并高效训练模型[^4]. 4. **优化器与损失函数** 探讨了几种常用的梯度下降变体(SGD, Adam等)及相应的损失衡量标准(MSE Loss, CrossEntropyLoss等),这些组件对于调整权重参数至关重要[^5]. 5. **数据加载与预处理** 展示了Dataset类和DataLoader类的功能特性,它们可以简化大规模图像分类任务的数据读取流程;同时也介绍了常见的图片增强技术来扩充样本集规模[^6]. 6. **卷积神经网络(CNN)** 结合具体实例深入剖析CNN架构设计思路,如LeNet,VGG,resnet系列,并给出完整的项目源码供参考学习[^7]. 7. **循环神经网络(RNN/LSTM/GRU)** 阐述时间序列预测场景下RNN家族成员的特点优势,通过手写字符识别实验验证其有效性[^8]. 8. **迁移学习实战演练** 利用预训练好的大型模型作为特征提取器,在新领域内快速建立高性能的应用程序,减少重复劳动成本的同时提高了泛化能力[^9]. 9. **分布式训练入门指导** 当面对超大数据集时,单机难以满足需求,此时可借助于torch.distributed包来进行集群式的协同工作模式探索[^10]. ```python import torch from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor()]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) for images, labels in train_loader: print(images.shape) break ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值