最长公共子序列(含序列输出)

本文深入探讨了最长公共子序列问题,通过动态规划方法解决两个序列的最长公共子序列长度计算,提供了详细的代码实现及输出示例。

                                         最长公共子序列

题目描述

给你一个序列X和另一个序列Z,当Z中的所有元素都在X中存在,并且在X中的下标顺序是严格递增的,那么就把Z叫做X的子序列。
例如:Z=<a,b,f,c>是序列X=<a,b,c,f,b,c>的一个子序列,Z中的元素在X中的下标序列为<1,2,4,6>。
现给你两个序列X和Y,请问它们的最长公共子序列的长度是多少?

输入

输入包含多组测试数据。每组输入占一行,为两个字符串,由若干个空格分隔。每个字符串的长度不超过100。

输出

对于每组输入,输出两个字符串的最长公共子序列的长度。

样例输入

abcfbc abfcab
programming contest 
abcd mnp

样例输出

4
2
0

题意描述:

求出两个字符序列最长公共子序列的长度。

解题思路:

DP动态规划思想,定义一个二位数组用来记录最长公共子序列的长度。双重循环将第一个字符序列中的每个字符都与第二个字符序列进行比较,当两个字符相等时,等于两个字符的上一对字符记录的最长公共子序列长度加一;不相等时,为这一对字符中的一个字符和另一个序列的前一个字符,存储的最长公共子序列数大的那个。

程序代码:

#include<stdio.h>
#include<string.h>
int maxx(int a,int b)
{
    if(a>b)
        return a;
    return b;
}
int main()
{
    char s1[210],s2[210];
    int i,j,len1,len2,dp[410][410];
    while(scanf("%s%s",s1,s2)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        len1=strlen(s1);
        len2=strlen(s2);
        for(i=1;i<=len1;i++)
            for(j=1;j<=len2;j++)
            {
                if(s1[i-1]==s2[j-1])
                {
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else
                    dp[i][j]=maxx(dp[i-1][j],dp[i][j-1]);
            }
        printf("%d\n",dp[len1][len2]);
    }
    return 0;
}
 

含序列输出最长公共自序列:

思路:再定义一个数组用来存储dp数组以哪种方式更新值,输出时判断此数组,两个序列此位置时dp以何种方式更新再继续递归查找输出。

程序代码:

#include<stdio.h>
#include<string.h>
char s1[110],s2[110];
int dp[110][110],b[110][110];
void qiuZC()
{
	int i,j,len1,len2;
	len1=strlen(s1);
	len2=strlen(s2);
	memset(dp,0,sizeof(dp));
	for(i=1;i<=len1;i++)
		for(j=1;j<=len2;j++)
		{
			if(s1[i-1]==s2[j-1])
			{
				dp[i][j]=dp[i-1][j-1]+1;
				b[i][j]=1;
			}
			else
			{
				if(dp[i-1][j]>=dp[i][j-1])
				{
					dp[i][j]=dp[i-1][j];
					b[i][j]=2;
				}
				else
				{
					dp[i][j]=dp[i][j-1];
					b[i][j]=3;
				}
			}
		}
}
void print(int i,int j)
{
	if(i==0||j==0)
		return;
	if(b[i][j]==1)
	{
		print(i-1,j-1);
		printf("%c",s1[i-1]);
	}
	else if(b[i][j]==2)
		print(i-1,j);
	else if(b[i][j]==3)
		print(i,j-1);
	
}
int main()
{
	int len1,len2;
	scanf("%s%s",s1,s2);
	len1=strlen(s1);
	len2=strlen(s2);
	qiuZC();
	printf("\n最长公共子序列长度为:%d\n\n",dp[len1][len2]);
	printf("最长公共子序列为:\n");
	print(len1,len2);
	printf("\n\n");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值