- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
(), [], (()), ()[], ()[()]while the following character sequences are not:
(, ], )(, ([)], ([(]Given a brackets sequence of characters a1a2 . . . an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, . . . , im where 1 ≤ i1 < i2 < . . . < im ≤ n, ai1 ai2 . . . aim is a regular brackets sequence. For example, given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word " end " and should not be processed.Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
//
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
int dp[115][115],path[115][115];
char s[115];
void out(int i,int j)
{
if(i>j) return ;
if(i==j)
{
if(s[i]=='['||s[i]==']') cout<<"[]";
else cout<<"()";
return ;
}
if(path[i][j]==-1)
{
cout<<s[i];
out(i+1,j-1);
cout<<s[j];
}
else
{
out(i,path[i][j]);
out(path[i][j]+1,j);
}
}
int main()
{
while(gets(s))
{
if(s[0]=='e') break;
memset(path,0,sizeof(path));
int n=strlen(s);
if(n==0) {cout<<endl;continue;}
for(int i=0;i<=n;i++) dp[i][i]=1,dp[i][i-1]=0;
for(int p=1;p<n;p++)
{
for(int i=0;i+p<n;i++)
{
int j=i+p;
dp[i][j]=(1<<31)-1;
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
{
if(dp[i][j]>dp[i+1][j-1]) dp[i][j]=dp[i+1][j-1],path[i][j]=-1;
}
/* if(s[i]=='('||s[i]=='[')
{
if(dp[i][j]>dp[i+1][j]+1) dp[i][j]=dp[i+1][j]+1,path[i][j]=i;
}
if(s[j]==')'||s[j]==']')
{
if(dp[i][j]>dp[i][j-1]+1) dp[i][j]=dp[i][j-1]+1,path[i][j]=j-1;
}*/ //inclued by the next
for(int k=i;k<j;k++)
{
if(dp[i][j]>dp[i][k]+dp[k+1][j]) dp[i][j]=dp[i][k]+dp[k+1][j],path[i][j]=k;
}
}
}
cout<<n-dp[0][n-1]<<endl;
}
return 0;
}
本文探讨了如何找出给定括号序列中最长的有效括号子序列的长度,并提供了一个具体的实现方案。通过动态规划的方法,算法能够高效地解决这一问题。
293

被折叠的 条评论
为什么被折叠?



