poj 1149 PIGS

本文介绍了一种利用最大流算法解决农场售猪问题的方法。该问题涉及如何通过合理分配和销售不同猪舍中的猪来最大化销售数量。通过构建特定的网络流模型,实现了顾客需求与现有资源的有效匹配。

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

 

//

 

源点引出m条边分别代表每个猪圈猪的个数,如果顾客i是第一个开猪圈p的人,则源点向i连p的边,如果i是第k个打开p的人,则从第k-1个打开p的门的人向k引边,最后每个人向汇点连边。

这样一个流的含义就能够把猪圈之间的调换包含进去了

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=(1<<30);
const int point_num=300;
int cap[point_num][point_num],dist[point_num],gap[point_num];//初始化见main里面
int s0,t0,n;//源,汇和点数
int find_path(int p,int limit=0x3f3f3f3f)
{
    if(p==t0)   return limit;
    for(int i=0;i<n;i++)
    if(dist[p]==dist[i]+1  &&  cap[p][i]>0)
    {
       int t=find_path(i,min(cap[p][i],limit));
       if(t<0)   return t;
       if(t>0)
       {
            cap[p][i]-=t;
            cap[i][p]+=t;
            return t;
       }
    }
    int label=n;
    for(int i=0;i<n;i++)  if(cap[p][i]>0)  label=min(label,dist[i]+1);
    if(--gap[dist[p]]==0  ||  dist[s0]>=n )   return -1;
    ++gap[dist[p]=label];
    return 0;
}
int sap()
{
    //初始化s,t
    s0=0,t0=n-1;
    int t=0,maxflow=0;
    gap[0]=n;
    while((t=find_path(s0))>=0) maxflow+=t;
    return maxflow;
}
int pig[1100];
int vis[1100];
int main()
{
    int m;
    while(scanf("%d%d",&m,&n)==2)
    {
        //初始化
        memset(cap,0,sizeof(cap));
        memset(dist,0,sizeof(dist));
        memset(gap,0,sizeof(gap));
        //初始化cap
        for(int i=1;i<=m;i++) scanf("%d",&pig[i]);
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++)
        {
            int k;scanf("%d",&k);
            for(int j=0;j<k;j++)
            {
                int x;scanf("%d",&x);
                if(vis[x]==0)
                {
                    cap[0][i]+=pig[x];
                }
                else
                {
                    cap[vis[x]][i]=inf;
                }
                vis[x]=i;
            }
            scanf("%d",&cap[i][n+1]);
        }
        n+=2;
        printf("%d\n",sap());
    }
    return 0;
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值