1224: Arbitrage (II)
| Result | TIME Limit | MEMORY Limit | Run Times | AC Times | JUDGE |
|---|---|---|---|---|---|
| 3s | 8192K | 265 | 97 | Standard |
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent. Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
Input Specification
The input file will contain one or more test cases. On the first line of each test case there is an integer n (
), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name
of a source currency, a real number
which represents the exchange rate from
to
and a name
of the destination currency. Exchanges which do not appear in the table are impossible. Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
Output Specification
For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".
Sample Input
3 USDollar BritishPound FrenchFranc 3 USDollar 0.5 BritishPound BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar 3 USDollar BritishPound FrenchFranc 6 USDollar 0.5 BritishPound USDollar 4.9 FrenchFranc BritishPound 10.0 FrenchFranc BritishPound 1.99 USDollar FrenchFranc 0.09 BritishPound FrenchFranc 0.19 USDollar 0
Sample Output
Case 1: Yes Case 2: No
#include<iostream>
#include<map>
using namespace std;
int main()
{
int n,m,l=1;
while(scanf("%d",&n)==1&&n)
{
double a[50][50]={0};//floyd 求最长路
map<string,int> q;
for(int i=0;i<n;i++)
{
string str;
cin>>str;
//q.insert(map<string,int>::value_type(str,i));
// q.insert(pair<string,int>(str,i));
q[str]=i;
}
scanf("%d",&m);
while(m--)
{
string str1,str2;
double num;
cin>>str1>>num>>str2;
a[q[str1]][q[str2]]=num;
}
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(a[i][j]<a[i][k]*a[k][j]) a[i][j]=a[i][k]*a[k][j];
int flag=1;
for(int i=0;i<n;i++)
{
if(a[i][i]>1) {flag=0;break;}
}
if(!flag) printf("Case %d: Yes/n",l++);
else printf("Case %d: No/n",l++);
}
return 0;
}
本文介绍了一种通过图算法检测货币兑换中是否存在套利机会的方法。该算法接收一组货币及其兑换率作为输入,并利用Floyd算法寻找是否存在通过一系列兑换使得初始货币数量增加的可能性。
210

被折叠的 条评论
为什么被折叠?



