LeetCode刷题(python)——575. 分糖果

博客围绕偶数长度数组中糖果分配问题展开,不同数字代表不同种类糖果,要平均分给弟弟和妹妹。给出解题思路,若糖果种类数小于总糖果数一半,妹妹可得全部种类;若大于一半,妹妹获总糖果数一半。还给出代码实现,并提及可关注公众号免费获取海量Python视频教程。

题目描述:

给定一个偶数长度的数组,其中不同的数字代表着不同种类的糖果,每一个数字代表一个糖果。你需要把这些糖果平均分给一个弟弟和一个妹妹。返回妹妹可以获得的最大糖果的种类数。

示例 1:

输入: candies = [1,1,2,2,3,3]
输出: 3
解析: 一共有三种种类的糖果,每一种都有两个。
     最优分配方案:妹妹获得[1,2,3],弟弟也获得[1,2,3]。这样使妹妹获得糖果的种类数最多。

示例 2 :

输入: candies = [1,1,2,3]
输出: 2
解析: 妹妹获得糖果[2,3],弟弟获得糖果[1,1],妹妹有两种不同的糖果,弟弟只有一种。这样使得妹妹可以获得的糖果种类数最多。

解题思路:

  1. 如果糖果的数目小于总糖果数目的一半,则妹妹可以得到全部种类的糖果。
  2. 如果糖果的数目大于总糖果数目的一半,由于要平均分配,妹妹获得的糖果数目正好为总的糖果个数的一半。

代码实现:

class Solution(object):
    def distributeCandies(self, candies):
        """
        :type candies: List[int]
        :rtype: int
        """
        s = set(candies) # 先用集合获取糖果种类数目
        if len(s) < len(candies) / 2 :
            return len(s)
        else:
            return len(candies) / 2

                                               关注我的公众号免费获取海量python视频教程!!!!!

 

### LeetCodePython 的解思路及代码示例 #### 使用 Python 标准库的重要性 在解决 LeetCode时,熟悉 Python 标准库能够显著提高效率并简化代码逻辑。Python 提供了许多强大的内置模块和函数,这些工具可以帮助开发者快速处理复杂的数据结构和算法问[^1]。 以下是几个常见的 LeetCode 目及其对应的 Python 解法: --- #### 示例一:有效括号 (LeetCode 20) 此问是经典的栈操作案例。给定一个只包含 `'('` 和 `')'` 的字符串,判断该字符串中的括号是否合法。可以通过模拟栈的操作来验证每一对括号的匹配情况。 ```python def isValid(s: str) -> bool: stack = [] mapping = {")": "(", "}": "{", "]": "["} for char in s: if char in mapping.values(): stack.append(char) elif char in mapping.keys(): if not stack or stack.pop() != mapping[char]: return False return not stack ``` 上述代码利用了字典存储括号之间的映射关系,并通过列表作为栈的基础数据结构完成匹配过程[^2]。 --- #### 示例二:链表反转部节点 (LeetCode 92 或 类似于引用中的第 4 条) 对于链表类目,通常涉及指针操作以及边界条件的严格控制。以下是一个简单的例子——局部翻转链表的部节点。 输入样例: - 输入:`head = [1,2,3,4,5], k = 3` - 输出:`[3,2,1,4,5]` 解决方案如下所示: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def reverseKGroup(head: ListNode, k: int) -> ListNode: dummy = jump = ListNode(0) dummy.next = l = r = head while True: count = 0 while r and count < k: # 判断是否有k个节点待反转 r = r.next count += 1 if count == k: # 如果满足,则执行反转 pre, cur = None, l for _ in range(k): # 反转l到r之前的k个节点 temp = cur.next cur.next = pre pre = cur cur = temp jump.next = pre # 连接已反转部与剩余未反转部 jump = l # 移动jump至当前组最后一个节点位置(l现在指向原组最后一位) l = r # 更新下一次循环起点为下一组的第一个节点(r此时位于下一组第一个节点处或者None) else: # 不足k个则无需继续反转 break jump.next = l # 将最后一段不足k个的节点连接起来 return dummy.next # 返回新头结点dummy.next ``` 这段代码实现了对指定长度子序列的逆序排列功能[^4]。 --- #### 示例三:二叉树遍历系列 (LeetCode 144/94/145) 针对二叉树的不同遍历方式(前序、中序、后序),可以采用递归方法轻松实现。下面别展示这三种基本形式的具体实现方案。 ##### 前序遍历 (Preorder Traversal) ```python def preorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return result.append(node.val) # 访问根节点 dfs(node.left) # 左子树递归访问 dfs(node.right) # 右子树递归访问 dfs(root) return result ``` ##### 中序遍历 (Inorder Traversal) ```python def inorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return dfs(node.left) # 左子树递归访问 result.append(node.val) # 访问根节点 dfs(node.right) # 右子树递归访问 dfs(root) return result ``` ##### 后序遍历 (Postorder Traversal) ```python def postorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return dfs(node.left) # 左子树递归访问 dfs(node.right) # 右子树递归访问 result.append(node.val) # 访问根节点 dfs(root) return result ``` 以上三个版本均基于深度优先搜索策略构建而成,区别仅在于何时记录当前节点值的时间点不同而已[^3]。 --- ### 总结 通过对典型 LeetCode 目的解析可以看出,在日常过程中注重积累常用技巧非常重要;比如善用堆栈解决配对问、灵活运用链表双指针技术优化空间性能指标等等。同时也要不断巩固基础理论知识体系,这样才能更好地应对各种复杂的场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值