矩阵运算规律总结
矩阵相乘结合律
A(BC)=(AB)C A(BC)=(AB)C A(BC)=(AB)C
矩阵相乘交换律
A(B+C)=AB+AC(A+B)C=AC+BC A(B+C) = AB + AC \\ (A+B)C = AC + BC A(B+C)=AB+AC(A+B)C=AC+BC
矩阵的逆
设 AAA 为方阵,如果存在方阵 A−1A^{-1}A−1 使得
AA−1=A−1A=I
AA^{-1} = A^{-1}A = I
AA−1=A−1A=I则方阵 AAA 可逆,A−1A^{-1}A−1 为 AAA 的逆矩阵。方阵的逆若存在,则是唯一的,即一个方阵不可能有两个或以上的逆。如果方阵 AAA 和 BBB 均可逆,则其乘积 ABABAB 也可逆
(AB)−1= B−1A−1(AB)−1(AB)= B−1A−1AB= B−1(A−1A)B(结合律)= B−1IB= I
\begin{aligned}
(AB)^{-1} =& \ B^{-1}A^{-1} \\
\\
(AB)^{-1}(AB) =& \ B^{-1}A^{-1}AB \\
=& \ B^{-1}(A^{-1}A)B (结合律)\\
=& \ B^{-1}IB \\
=& \ I
\end{aligned}
(AB)−1=(AB)−1(AB)==== B−1A−1 B−1A−1AB B−1(A−1A)B(结合律) B−1IB I三个(或多个)方阵乘积的逆
(ABC)−1= C−1B−1A−1(A1A2…An)−1= An−1…A2−1A1−1
\begin{aligned}
(ABC)^{-1} =& \ C^{-1}B^{-1}A^{-1} \\
(A_1A_2 \dots A_n)^{-1} =& \ A_n^{-1} \dots A_2^{-1}A_1^{-1}
\end{aligned}
(ABC)−1=(A1A2…An)−1= C−1B−1A−1 An−1…A2−1A1−1
若方阵 AAA 可逆,则方阵 AAA 满足消去律,即
AB=AC ⟹ B=C
AB = AC \implies B=C
AB=AC⟹B=C证明
AB=AC ⟹ A−1AB=A−1AC ⟹ IB=IC ⟹ B=C
AB = AC \implies A^{-1}AB = A^{-1}AC \implies IB=IC \implies B = C
AB=AC⟹A−1AB=A−1AC⟹IB=IC⟹B=C
矩阵转置
矩阵相加的转置
(A+B)T=AT+BT
(A + B)^T = A^T + B^T
(A+B)T=AT+BT
矩阵乘积的转置
(AB)T= BTAT(ABC)T= CTBTAT
\begin{aligned}
(AB)^T =& \ B^TA^T \\
(ABC)^T =& \ C^TB^TA^T
\end{aligned}
(AB)T=(ABC)T= BTAT CTBTAT
矩阵的逆和转置操作可以交换,即
(AT)−1=(A−1)T
(A^{T})^{-1}=(A^{-1})^T
(AT)−1=(A−1)T证明:
AT(A−1)T=(A−1A)T=I
A^T(A^{-1})^T = (A^{-1}A)^T = I
AT(A−1)T=(A−1A)T=I所以 (A−1)T(A^{-1})^T(A−1)T 即是 ATA^TAT 的逆,即
(AT)−1=(A−1)T
(A^{T})^{-1}=(A^{-1})^T
(AT)−1=(A−1)T

本文总结了矩阵运算的基本规律,包括矩阵相乘的结合律、交换律及矩阵逆、转置等概念及其性质。通过这些核心内容,读者可以深入理解矩阵运算的特性。
4万+

被折叠的 条评论
为什么被折叠?



