原创博客,转载请注明出处!
1、无监督学习
什么是无监督学习?在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:
在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法。
聚类算法一般用来做什么呢?
2、K-Means算法
K-均值算法
K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。
K-均值是一个迭代算法,假设我们想要将数据聚类成n个组,其方法为:
首先选择 K 个随机的点,称为聚类中心(cluster centroids);
对于数据集中的每一个数据,按照距离 K 个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。
计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。
重复步骤2-4直至中心点不再变化。
K-均值算法另一个常见应用:它可以用来解决分离不佳的蔟的问题
3、优化目标
理解几个定义:
表示当前样本xi所属的那个蔟的索引或者序号
表示第k个聚类中心的位置
表示xi所属的那个蔟的聚类中心
K-均值算法最小化的代价函数(也称畸变函数)有时也叫失真代价函数或K均值算法的失真
K-均值算法的步骤
4、随机初始化
在运行K-均值算法的之前,我们首先要随机初始化所有的聚类中心点,下面介绍怎样做:
①我们应该选择 K<m ,即聚类中心点的个数要小于所有训练集实例的数量
②随机选择 K 个训练实例,然后令 K 个聚类中心分别与这 K 个训练实例相等
K-均值的一个问题在于,它有可能会停留在一个局部最小值处,而这取决于初始化的情况。
为了解决这个问题,我们通常需要多次运行K-均值算法,每一次都重新进行随机初始化,最后再比较多次运行K-均值的结果,选择代价函数最小的结果。这种方法在 K 较小的时候(2--10)还是可行的,但是如果 K 较大,这么做也可能不会有明显地改善。
5、选取聚类数量
没有所谓最好的选择聚类数的方法,通常是需要根据不同的问题,人工进行选择的。选择的时候思考我们运用K-均值算法聚类的动机是什么,然后选择能最好服务于该目的标聚类数。
当人们在讨论,选择聚类数目的方法时,有一个可能会谈及的方法叫作“肘部法则”。关于“肘部法则”,我们所需要做的是改变 K 值,也就是聚类类别数目的总数。我们用一个聚类来运行K均值聚类方法。这就意味着,所有的数据都会分到一个聚类里,然后计算成本函数或者计算畸变函数 J 。 K 代表聚类数字。
我们可能会得到一条类似于这样的曲线。像一个人的肘部。这就是“肘部法则”所做的,让我们来看这样一个图,看起来就好像有一个很清楚的肘在那儿。好像人的手臂,如果你伸出你的胳膊,那么这就是你的肩关节、肘关节、手。这就是“肘部法则”。你会发现这种模式,它的畸变值会迅速下降,从1到2,从2到3之后,你会在3的时候达到一个肘点。在此之后,畸变值就下降的非常慢,看起来就像使用3个聚类来进行聚类是正确的,这是因为那个点是曲线的肘点,畸变值下降得很快, K=3 之后就下降得很慢,那么我们就选 K=3 。当你应用“肘部法则”的时候,如果你得到了一个像上面这样的图,那么这将是一种用来选择聚类个数的合理方法。
我们的 T-恤制造例子中,我们要将用户按照身材聚类,我们可以分成3个尺寸: S,M,L ,也可以分成5个尺寸 XS,S,M,L,XL ,这样的选择是建立在回答“聚类后我们制造的T-恤是否能较好地适合我们的客户”这个问题的基础上作出的。