动态规划(2)

题目
trs喜欢滑雪。他来到了一个滑雪场,这个滑雪场是一个矩形,为了简便,我们用r行c列的矩阵来表示每块地形。为了得到更快的速度,滑行的路线必须向下倾斜。 例如样例中的那个矩形,可以从某个点滑向上下左右四个相邻的点之一。例如24-17-16-1,其实25-24-23…3-2-1更长,事实上这是最长的一条。

输入格式:

第1行: 两个数字r,c(1< =r,c< =100),表示矩阵的行列。 第2..r+1行:每行c个数,表示这个矩阵。

输出格式:

仅一行: 输出1个整数,表示可以滑行的最大长度。

样例输入

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
样例输出

25


分析题目:
题目是从某个点出发,那么假设先从h[0][0]开始
它的初始值距离为1,而后向选择4个方向走
有f[i][j]表示每个起始点的最大滑行距离,然后用dfs记忆搜索

状态转移方程

f[x][y] = max(f[x][y], DFS(x, y - 1) + 1);
f[x][y] = max(f[x][y], DFS(x, y - 1) + 1);
f[x][y] = max(f[x][y], DFS(x + 1, y) + 1);
f[x][y] = max(f[x][y], DFS(x, y + 1) + 1);


#include "bits/stdc++.h"

using namespace std ;
const int maxN = 110 ;

int h[maxN][maxN] , f[maxN][maxN] ;
int n, m, ans = 1;

int DFS(int x, int y)
{
    if( f[x][y] )//判断是否被搜索过
        return f[x][y];
    f[x][y] = 1;
    if(x > 1 && h[x][y] < h[x - 1][y])
    f[x][y] = max(f[x][y], DFS(x - 1, y) + 1);
    if(y > 1 && h[x][y] < h[x][y - 1])
    f[x][y] = max(f[x][y], DFS(x, y - 1) + 1);
    if(x < n && h[x][y] < h[x + 1][y])
    f[x][y] = max(f[x][y], DFS(x + 1, y) + 1);
    if(y < m && h[x][y] < h[x][y + 1])
    f[x][y] = max(f[x][y], DFS(x, y + 1) + 1);
    ans = max(ans, f[x][y]);
    return f[x][y];
}
int main()
{
    scanf("%d%d", &n, &m);
    for ( int i = 1 ; i <= n ; i++ )
        for ( int j = 1 ; j <= m ; j++ )
            scanf( "%d" , &h[i][j] ) ;
    for(int i = 1 ; i <= n ; i++ )
        for(int j = 1 ; j <= m ; j++ )
            f[i][j] = DFS( i , j ) ;
    printf("%d", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值