幂律分布(Power Law distruibition):
Zipf定律与Pareto定律都是简单的幂函数,我们称之为幂律分布;还有其他形式的幂律分布,像名次- 规模分布、规模- 概率分布,这四种形式在数学上是等价的,其通式可写成

判断两个随机变量是否满足线性关系,可以求解两者之间的相关系数;利用一元线性回归模型和最小二乘法,可得lny对lnx的经验回归直线方程,从而得到y与x之间的幂律关系式.在双对数坐标下的图形,由于某些因素的影响,前半部分的线性特性并不是很强,而在后半部分,则近乎为一直线,其斜率的负数就是幂指数。
2
Poisson分布: 是一种统计与概率学里常见到的离散概率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。
概率函数:
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为


在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均
瞬时速率
λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布
P(
λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位。
http://baike.baidu.com/view/79815.htm
指数分布:指数函数 exponential function===Memoryless Property 无记忆性. http://baike.baidu.com/view/743082.htm
指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。
指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。
正态分布即高斯分布:normal distribution==gaussian distribution . :正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。 http://baike.baidu.com/view/45379.htm
正态分布图
长尾理论: http://baike.baidu.com/subview/327983/5047777.htm