A Knight's Journey
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 34677 | Accepted: 11835 |
Description

The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
Source
TUD Programming Contest 2005, Darmstadt, Germany
问是否能马跳整个图,dfs就行
.-' _..`.
/ .'_.'.'
| .' (.)`.
;' ,_ `.
.--.__________.' ; `.;-'
| ./ /
| | /
`..'`-._ _____, ..'
/ | | | |\ \
/ /| | | | \ \
/ / | | | | \ \
/_/ |_| |_| \_\
|__\ |__\ |__\ |__\
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
using namespace std;
int xx[9]={0,-2,-2,-1,-1,1,1,2,2};
int yy[9]={0,-1,1,-2,2,-2,2,-1,1};
int mp[50][50];
int T,m,n,flag;
struct path
{
int x,y;
}p[233];
bool check(int x,int y)
{
if(x>0&&y>0&&x<=n&&y<=m&&mp[x][y]==0) return true;
return false;
}
void dfs(int x,int y,int step)
{
p[step].x=x;
p[step].y=y;
//cout<<x<<" "<<y<<" "<<step<<endl;
if(step==m*n)
{
flag=1;
return ;
}
for(int i=1;i<=8;i++)
{
if(check(x+xx[i],y+yy[i]))
{
mp[x+xx[i]][y+yy[i]]=1;
dfs(x+xx[i],y+yy[i],step+1);
if(flag) return ;
mp[x+xx[i]][y+yy[i]]=0;
}
}
}
int main()
{
cin>>T;
int _case=0;
while(T--)
{
cout<<"Scenario #"<<++_case<<":"<<endl;
cin>>m>>n;
flag=0;
memset(mp,0,sizeof(mp));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
memset(mp,0,sizeof(mp));
mp[i][j]=1;
dfs(i,j,1);
if(flag) break;
mp[i][j]=0;
}
if(flag) break;
}
if(!flag) cout<<"impossible"<<endl<<endl;
else
{
for(int i=1;i<=m*n;i++)
cout<<(char)(p[i].x+'A'-1)<<p[i].y;
cout<<endl<<endl;
}
}
return 0;
}