telecom dict

http://telecommunication.telecommunication.techdictionary.org/CLIR
# -*-coding:utf-8-*- """ Author: Thinkgamer Desc: 代码8-1: 第八章 GBDT模型 电信客户流失预测 """ from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingClassifier from sklearn import metrics from sklearn.metrics import mean_squared_error import pandas as pd import os class ChurnPredWithGBDT: def __init__(self): self.file = "data/telecom-churn/telecom-churn-prediction-data.csv" self.data = self.feature_transform() self.train, self.test = self.split_data() # 空缺值以0值填充 def isNone(self, value): if value == " " or value is None: return "0.0" else: return value # 特征转换 def feature_transform(self): if not os.path.exists("./data/new-churn.csv"): print("Start Feature Transform ...") # 定义特征转换字典 feature_dict = { "gender": {"Male": "1", "Female": "0"}, "Partner": {"Yes": "1", "No": "0"}, "Dependents": {"Yes": "1", "No": "0"}, "PhoneService": {"Yes": "1", "No": "0"}, "MultipleLines": {"Yes": "1", "No": "0", "No phone service": "2"}, "InternetService": {"DSL": "1", "Fiber optic": "2", "No": "0"}, "OnlineSecurity": {"Yes": "1", "No": "0", "No internet service": "2"}, "OnlineBackup": {"Yes": "1", "No": "0", "No internet service": "2"}, "DeviceProtection": {"Yes": "1", "No": "0", "No internet service": "2"}, "TechSupport": {"Yes": "1", "No": "0", "No internet service": "2"}, "StreamingTV": {"Yes": "1", "No": "0", "No internet service": "2"}, "StreamingMovies": {"Yes": "1", "No": "0", "No internet service": "2"}, "Contract": {"Month-to-month": "0", "One year": "1", "Two year": "2"}, "PaperlessBilling": {"Yes": "1", "No": "0"}, "PaymentMethod": { "Electronic check": "0", "Mailed check": "1", "Bank transfer (automatic)": "2", "Credit card (automatic)": "3", }, "Churn": {"Yes": "1", "No": "0"}, } fw = open("data/new_churn.csv", "w") fw.write( "customerID,gender,SeniorCitizen,Partner,Dependents,tenure,PhoneService,MultipleLines," "InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV," "StreamingMovies,Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges,Churn\n" ) for line in open(self.file, "r").readlines(): if line.startswith("customerID"): continue customerID, gender, SeniorCitizen, Partner, Dependents, tenure, PhoneService, MultipleLines, \ InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, \ StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges, Churn \ = line.strip().split(",") _list = list() _list.append(customerID) _list.append(self.isNone(feature_dict["gender"][gender])) _list.append(self.isNone(SeniorCitizen)) _list.append(self.isNone(feature_dict["Partner"][Partner])) _list.append(self.isNone(feature_dict["Dependents"][Dependents])) _list.append(self.isNone(tenure)) _list.append(self.isNone(feature_dict["PhoneService"][PhoneService])) _list.append(self.isNone(feature_dict["MultipleLines"][MultipleLines])) _list.append( self.isNone(feature_dict["InternetService"][InternetService]) ) _list.append( self.isNone(feature_dict["OnlineSecurity"][OnlineSecurity]) ) _list.append(self.isNone(feature_dict["OnlineBackup"][OnlineBackup])) _list.append( self.isNone(feature_dict["DeviceProtection"][DeviceProtection]) ) _list.append(self.isNone(feature_dict["TechSupport"][TechSupport])) _list.append(self.isNone(feature_dict["StreamingTV"][StreamingTV])) _list.append( self.isNone(feature_dict["StreamingMovies"][StreamingMovies]) ) _list.append(self.isNone(feature_dict["Contract"][Contract])) _list.append( self.isNone(feature_dict["PaperlessBilling"][PaperlessBilling]) ) _list.append(self.isNone(feature_dict["PaymentMethod"][PaymentMethod])) _list.append(self.isNone(MonthlyCharges)) _list.append(self.isNone(TotalCharges)) _list.append(feature_dict["Churn"][Churn]) fw.write(",".join(_list)) fw.write("\n") return pd.read_csv("data/new_churn.csv") else: return pd.read_csv("data/new_churn.csv") # 数据集拆分为训练集和测试集 def split_data(self): train, test = train_test_split( self.data, test_size=0.1, random_state=40 ) return train, test # 调用skleran进行模型训练 def train_model(self): print("Start Train Model ... ") lable = "Churn" ID = "customerID" x_columns = [x for x in self.train.columns if x not in [lable, ID]] x_train = self.train[x_columns] y_train = self.train[lable] gbdt = GradientBoostingClassifier( learning_rate=0.1, n_estimators=200, max_depth=5 ) gbdt.fit(x_train, y_train) return gbdt # 模型评估 def evaluate(self, gbdt): lable = "Churn" ID = "customerID" x_columns = [x for x in self.test.columns if x not in [lable, ID]] x_test = self.test[x_columns] y_test = self.test[lable] y_pred = gbdt.predict_proba(x_test) new_y_pred = list() for y in y_pred: # y[0] 表示样本label=0的概率 y[1]表示样本label=1的概率 new_y_pred.append(1 if y[1] > 0.5 else 0) mse = mean_squared_error(y_test, new_y_pred) print("MSE: %.4f" % mse) accuracy = metrics.accuracy_score(y_test.values, new_y_pred) print("Accuracy : %.4g" % accuracy) auc = metrics.roc_auc_score(y_test.values, new_y_pred) print("AUC Score : %.4g" % auc) if __name__ == "__main__": pred = ChurnPredWithGBDT() gbdt = pred.train_model() print(gbdt) pred.evaluate(gbdt)给出具体解决方法C:\Users\Administrator\PycharmProjects\PythonProject1\.venv\Scripts\python.exe C:\Users\Administrator\Desktop\推荐算法\案例7-1-基于GBDT的排序方法\案例7-1-基于GBDT的排序方法\GBDT模型的电信客户流失预测.py Start Feature Transform ... Traceback (most recent call last): File "C:\Users\Administrator\Desktop\推荐算法\案例7-1-基于GBDT的排序方法\案例7-1-基于GBDT的排序方法\GBDT模型的电信客户流失预测.py", line 150, in <module> pred = ChurnPredWithGBDT() File "C:\Users\Administrator\Desktop\推荐算法\案例7-1-基于GBDT的排序方法\案例7-1-基于GBDT的排序方法\GBDT模型的电信客户流失预测.py", line 18, in __init__ self.data = self.feature_transform() ~~~~~~~~~~~~~~~~~~~~~~^^ File "C:\Users\Administrator\Desktop\推荐算法\案例7-1-基于GBDT的排序方法\案例7-1-基于GBDT的排序方法\GBDT模型的电信客户流失预测.py", line 62, in feature_transform for line in open(self.file, "r").readlines(): ~~~~^^^^^^^^^^^^^^^^ FileNotFoundError: [Errno 2] No such file or directory: 'data/telecom-churn/telecom-churn-prediction-data.csv'
11-12
需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值