step-by-step guide for debugging native code,

本文档提供了一步一步的指南来帮助开发者调试Android平台上的原生代码。它详细介绍了安装必要的工具、配置Eclipse环境及调试过程中的关键步骤。

A step-by-step guide for debugging native code, by Carlos Souto

Pre-requisites

  • 0) Sequoyah Native Debug feature must be installed.
    You can install it from Sequoyah update site:

    It will install CDT's dependencies if needed:
  • 1) The platform must be Android 2.2 (android-8)
  • 2) The ndk version must be r4b (it contains bugfixes to ndk-gdb that are necessary)
  • 3) Eclipse CDT 7.0 or newer must be installed
  • 4) The AndroidManifest.xml must have the property of the application node android:debuggable="true": 

  • 5) The build must have been done with the ndk-build (if using the Sequoyah Android components, it will be automatic)

Configurations

  • 01) Create a debug configuration for an Android application (can be done with Eclipse or MOTODEV Studio)
  • 02) Create a debug configuration for a C/C++ application
  • 03) Set the following properties: 

  • 04) The process launcher must be the Standard Process Launcher. This is selected at the bottom of the Main tab: 

  • 05) On the "Main" tab: 
    the Field C/C++ Application: $PROJECT_PATH/obj/local/armeabi/app_process
  • 06) On the "Debugger" tab: 
    • field Debugger: gdbserver
    • On the "Main" subtab: 

    • 07) GDB debugger: $NDK_PATH/build/prebuilt/$ARCH/arm-eabi-$GCC_VERSION/bin/arm-eabi-gdb
    • 08) GDB command file: $PROJECT_PATH/obj/local/armeabi/gdb2.setup
      [Windows users] Uncheck the "Use full file path to set breakpoints" option
    • On the "Connection" subtab: 

    • 09) Type: TCP
    • 10) Hostname or IP address: localhost
    • 11) Port number: 5039

Instructions

  • Open the ndk-gdb script that came with the android NDK and comment the last line
    (we are not calling the usual gdb client, but we will attach an Eclipse gdb session instead):
    # $GDBCLIENT -x $GDBSETUP -e $APP_PROCESS
  • Insert a breakpoint in your Java code, preferably after all System.loadLibrary() calls. 
    (To make sure that the debugger is correctly attached to the Java process)
  • Launch the android debug and wait for it to reach the breakpoint
  • From a Terminal session, in the project folder, run the modified ndk-gdb command. It should not attach 
    to an gdb client, but call the gdbserver on the emulator and open a TCP port for connection.
  • In the $PROJECT_PATH/obj/local/armeabi/, modify the gdb.setup file, removing the target remote:5039 statement. 
    (For some reason, the Eclipse GDB session does not like this statement being done in the commands file)
    Rename this new file to gdb2.setup. This step need to be run just once, on the first debug session.
    (I am working on further tweaking the ndk-gdb script to generate the gdb.setup file without the target statement, 
    but for the time being, this workaround will work)
  • Launch the C/C++ Application debug and wait for the Eclipse GDB session 
    to fully connect to the emulator's gdbserver instance
  • After following these steps, one can continue to debug the application as usual, using the "continue" option 
    to let the execution flow until the next breakpoint is hit or by using the usual "step-in" to execute each statement
    individually. Setting a breakpoint on a Java statement that calls a native function through JNI and stepping 
    into will place the user at the beginning of the native code. 
这个是完整源码 python实现 Django 【python毕业设计】基于Python的天气预报(天气预测分析)(Django+sklearn机器学习+selenium爬虫)可视化系统.zip 源码+论文+sql脚本 完整版 数据库是mysql 本研究旨在开发一个基于Python的天气预报可视化系统,该系统结合了Django框架、sklearn机器学习库和Selenium爬虫技术,实现对天气数据的收集、分析和可视化。首先,我们使用Selenium爬虫技术从多个天气数据网站实时抓取气象数据,包括温度、湿度、气压、风速等多项指标。这些数据经过清洗和预处理后本研究旨在开发一个基于Python的天气预报可视化系统,该系统结合了Django框架、sklearn机器学习库和Selenium爬虫技术,实现对天气数据的收集、分析和可视化。首先,我们使用Selenium爬虫技术从多个天气数据网站实时抓取气象数据,包括温度、湿度、气压、风速等多项指标。这些数据经过清洗和预处理后,将其存储在后端数据库中,以供后续分析。 其次,采用s,将其存储在后端数据库中,以供后续分析。 其次,采用sklearn机器学习库构建预测模型,通过时间序列分析和回归方法,对未来天气情况进行预测。我们利用以往的数据训练模型,以提高预测的准确性。通过交叉验证和超参数优化等技术手段,我们优化了模型性能,确保其在实际应用中的有效性和可靠性。 最后,基于Django框架开发前端展示系统,实现天气预报的可视化。用户可以通过友好的界面查询实时天气信息和未来几天内的天气预测。系统还提供多种图表类型,包括折线图和柱状图,帮助用户直观理解天气变化趋势。 本研究的成果为天气预报领域提供了一种新的技术解决方案,不仅增强了数据获取和处理的效率,还提升了用户体验。未来,该系统能够扩展至其他气象相关的应用场景,为大众提供更加准确和及时的气象服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值