Windows 7 Fix 0.0.0.0 Default Gateway Issue

修复Windows 7默认网关0.0.0.0问题
本文介绍了解决Windows 7操作系统中出现默认网关设置为0.0.0.0的问题。通过使用命令提示符进行一系列操作,包括删除错误的默认网关设置、释放和更新IP配置。此外,还提到了如果安装了Adobe软件,可能需要禁用Bonjour服务来避免此类问题。
If default gateway is set to 0.0.0.0 (check with cmd > ipconfig /all) this needs to be removed by: 
  1. Run cmd.exe as Administrator
  2. At command type this command: 
    route delete 0.0.0.0and hit enter
  3. Then type: 
    ipconfig /releaseand hit enter, then type: 
    ipconfig /renewand hit enter
This will remove 0.0.0.0 as the default gateway (or read  Microsoft KB Article ). It is possible the Adobe Bonjour service is causing this problem if Adobe Software is installed on Windows 7 OS, to fix this problem stop the Bonjour service from running: 
  1. Run msconfig
  2. Click on "Services" tab and find an entry like "##Id_String1.6844F930[...]" (this is what it was on my machine - manufacturer should be "Apple Computer, Inc.")

  1. Uncheck the box next to the entry to disable the service from starting

References:
Windows 7 Fix 0.0.0.0 Default Gateway Issue
http://www.shayanderson.com/microsoft-windows/windows-7-fix-0-0-0-0-default-gateway-issue.htm

Windows 7 - Two default gateway 0.0.0.0
https://social.technet.microsoft.com/Forums/windows/en-US/765aa1c6-dd9a-4447-9de0-aecc41498b04/windows-7-two-default-gateway-0000?forum=w7itpronetworking

PS C:\jichuang\Project\pythonProject> pip install deepface Collecting deepface Using cached deepface-0.0.93-py3-none-any.whl.metadata (30 kB) Collecting requests>=2.27.1 (from deepface) Using cached requests-2.32.4-py3-none-any.whl.metadata (4.9 kB) Requirement already satisfied: numpy>=1.14.0 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (2.3.1) Requirement already satisfied: pandas>=0.23.4 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (2.3.0) Collecting gdown>=3.10.1 (from deepface) Using cached gdown-5.2.0-py3-none-any.whl.metadata (5.8 kB) Collecting tqdm>=4.30.0 (from deepface) Using cached tqdm-4.67.1-py3-none-any.whl.metadata (57 kB) Requirement already satisfied: Pillow>=5.2.0 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (11.3.0) Requirement already satisfied: opencv-python>=4.5.5.64 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (4.11.0.86) INFO: pip is looking at multiple versions of deepface to determine which version is compatible with other requirements. This could take a while. Collecting deepface Using cached deepface-0.0.92-py3-none-any.whl.metadata (27 kB) Using cached deepface-0.0.91-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.90-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.89-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.88-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.87-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.86-py3-none-any.whl.metadata (24 kB) INFO: pip is still looking at multiple versions of deepface to determine which version is compatible with other requirements. This could take a while. Using cached deepface-0.0.85-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.84-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.83-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.82-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.81-py3-none-any.whl.metadata (24 kB) INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C. Using cached deepface-0.0.80-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.79-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.78-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.75-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.74-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.73-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.72-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.71-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.70-py3-none-any.whl.metadata (18 kB) Using cached deepface-0.0.69-py3-none-any.whl.metadata (18 kB) Using cached deepface-0.0.68-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.67-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.66-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.65-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.64-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.63-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.62-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.61-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.60-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.59-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.58-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.57-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.56-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.55-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.54-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.53-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.52-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.51-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.50-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.49-py3-none-any.whl.metadata (17 kB) Using cached deepface-0.0.48-py3-none-any.whl.metadata (17 kB) Using cached deepface-0.0.47-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.46-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.45-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.44-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.43-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.41-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.40-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.39-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.38-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.37-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.36-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.35-py3-none-any.whl.metadata (14 kB) Using cached deepface-0.0.34-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.33-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.32-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.31-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.30-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.26-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.25-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.24-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.23-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.22-py3-none-any.whl.metadata (12 kB) Using cached deepface-0.0.21-py3-none-any.whl.metadata (12 kB) Using cached deepface-0.0.20-py3-none-any.whl.metadata (10 kB) Using cached deepface-0.0.19-py3-none-any.whl.metadata (10 kB) Using cached deepface-0.0.18-py3-none-any.whl.metadata (9.6 kB) Using cached deepface-0.0.16-py3-none-any.whl.metadata (9.6 kB) Using cached deepface-0.0.15-py3-none-any.whl.metadata (9.7 kB) Using cached deepface-0.0.14-py3-none-any.whl.metadata (9.7 kB) Requirement already satisfied: matplotlib>=2.2.2 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (3.10.3) Using cached deepface-0.0.13-py3-none-any.whl.metadata (9.7 kB) Using cached deepface-0.0.12-py3-none-any.whl.metadata (9.2 kB) Using cached deepface-0.0.11-py3-none-any.whl.metadata (9.2 kB) Using cached deepface-0.0.10-py3-none-any.whl.metadata (9.2 kB) Using cached deepface-0.0.9-py3-none-any.whl.metadata (8.6 kB) Using cached deepface-0.0.7-py3-none-any.whl.metadata (8.3 kB) Using cached deepface-0.0.6-py3-none-any.whl.metadata (7.9 kB) Using cached deepface-0.0.5-py3-none-any.whl.metadata (8.3 kB) Using cached deepface-0.0.4-py3-none-any.whl.metadata (8.1 kB) Using cached deepface-0.0.3-py3-none-any.whl.metadata (8.1 kB) Using cached deepface-0.0.2-py3-none-any.whl.metadata (8.0 kB) Using cached deepface-0.0.1-py3-none-any.whl.metadata (4.4 kB) ERROR: Cannot install deepface==0.0.1, deepface==0.0.10, deepface==0.0.11, deepface==0.0.12, deepface==0.0.13, deepface==0.0.14, deepface==0.0.15, d eepface==0.0.16, deepface==0.0.18, deepface==0.0.19, deepface==0.0.2, deepface==0.0.20, deepface==0.0.21, deepface==0.0.22, deepface==0.0.23, deepfa ce==0.0.24, deepface==0.0.25, deepface==0.0.26, deepface==0.0.3, deepface==0.0.30, deepface==0.0.31, deepface==0.0.32, deepface==0.0.33, deepface==0 .0.34, deepface==0.0.35, deepface==0.0.36, deepface==0.0.37, deepface==0.0.38, deepface==0.0.39, deepface==0.0.4, deepface==0.0.40, deepface==0.0.41 , deepface==0.0.43, deepface==0.0.44, deepface==0.0.45, deepface==0.0.46, deepface==0.0.47, deepface==0.0.48, deepface==0.0.49, deepface==0.0.5, dee pface==0.0.50, deepface==0.0.51, deepface==0.0.52, deepface==0.0.53, deepface==0.0.54, deepface==0.0.55, deepface==0.0.56, deepface==0.0.57, deepfac e==0.0.58, deepface==0.0.59, deepface==0.0.6, deepface==0.0.60, deepface==0.0.61, deepface==0.0.62, deepface==0.0.63, deepface==0.0.64, deepface==0. 0.65, deepface==0.0.66, deepface==0.0.67, deepface==0.0.68, deepface==0.0.69, deepface==0.0.7, deepface==0.0.70, deepface==0.0.71, deepface==0.0.72, deepface==0.0.73, deepface==0.0.74, deepface==0.0.75, deepface==0.0.78, deepface==0.0.79, deepface==0.0.80, deepface==0.0.81, deepface==0.0.82, dee pface==0.0.83, deepface==0.0.84, deepface==0.0.85, deepface==0.0.86, deepface==0.0.87, deepface==0.0.88, deepface==0.0.89, deepface==0.0.9, deepface==0.0.90, deepface==0.0.91, deepface==0.0.92 and deepface==0.0.93 because these package versions have conflicting dependencies. The conflict is caused by: deepface 0.0.93 depends on tensorflow>=1.9.0 deepface 0.0.92 depends on tensorflow>=1.9.0 deepface 0.0.91 depends on tensorflow>=1.9.0 deepface 0.0.90 depends on tensorflow>=1.9.0 deepface 0.0.89 depends on tensorflow>=1.9.0 deepface 0.0.88 depends on tensorflow>=1.9.0 deepface 0.0.87 depends on tensorflow>=1.9.0 deepface 0.0.86 depends on tensorflow>=1.9.0 deepface 0.0.85 depends on tensorflow>=1.9.0 deepface 0.0.84 depends on tensorflow>=1.9.0 deepface 0.0.83 depends on tensorflow>=1.9.0 deepface 0.0.82 depends on tensorflow>=1.9.0 deepface 0.0.81 depends on tensorflow>=1.9.0 deepface 0.0.80 depends on tensorflow>=1.9.0 deepface 0.0.79 depends on tensorflow>=1.9.0 deepface 0.0.78 depends on tensorflow>=1.9.0 deepface 0.0.75 depends on tensorflow>=1.9.0 deepface 0.0.74 depends on tensorflow>=1.9.0 deepface 0.0.73 depends on tensorflow>=1.9.0 deepface 0.0.72 depends on tensorflow>=1.9.0 deepface 0.0.71 depends on tensorflow>=1.9.0 deepface 0.0.70 depends on tensorflow>=1.9.0 deepface 0.0.69 depends on tensorflow>=1.9.0 deepface 0.0.68 depends on tensorflow>=1.9.0 deepface 0.0.67 depends on tensorflow>=1.9.0 deepface 0.0.66 depends on tensorflow>=1.9.0 deepface 0.0.65 depends on tensorflow>=1.9.0 deepface 0.0.64 depends on tensorflow>=1.9.0 deepface 0.0.63 depends on tensorflow>=1.9.0 deepface 0.0.62 depends on tensorflow>=1.9.0 deepface 0.0.61 depends on tensorflow>=1.9.0 deepface 0.0.60 depends on tensorflow>=1.9.0 deepface 0.0.59 depends on tensorflow>=1.9.0 deepface 0.0.58 depends on tensorflow>=1.9.0 deepface 0.0.57 depends on tensorflow>=1.9.0 deepface 0.0.56 depends on tensorflow>=1.9.0 deepface 0.0.55 depends on tensorflow>=1.9.0 deepface 0.0.54 depends on tensorflow>=1.9.0 deepface 0.0.53 depends on tensorflow>=1.9.0 deepface 0.0.52 depends on tensorflow>=1.9.0 deepface 0.0.51 depends on tensorflow>=1.9.0 deepface 0.0.50 depends on tensorflow>=1.9.0 deepface 0.0.49 depends on tensorflow>=1.9.0 deepface 0.0.48 depends on tensorflow>=1.9.0 deepface 0.0.47 depends on tensorflow>=1.9.0 deepface 0.0.46 depends on tensorflow>=1.9.0 deepface 0.0.45 depends on tensorflow>=1.9.0 deepface 0.0.44 depends on tensorflow>=1.9.0 deepface 0.0.43 depends on tensorflow>=1.9.0 deepface 0.0.41 depends on tensorflow>=1.9.0 deepface 0.0.40 depends on tensorflow>=1.9.0 deepface 0.0.39 depends on tensorflow>=1.9.0 deepface 0.0.38 depends on tensorflow>=1.9.0 deepface 0.0.37 depends on tensorflow>=1.9.0 deepface 0.0.36 depends on tensorflow>=1.9.0 deepface 0.0.35 depends on tensorflow>=1.9.0 deepface 0.0.34 depends on tensorflow>=1.9.0 deepface 0.0.33 depends on tensorflow>=1.9.0 deepface 0.0.32 depends on tensorflow>=1.9.0 deepface 0.0.31 depends on tensorflow>=1.9.0 deepface 0.0.30 depends on tensorflow>=1.9.0 deepface 0.0.26 depends on tensorflow>=1.9.0 deepface 0.0.25 depends on tensorflow>=1.9.0 deepface 0.0.24 depends on tensorflow>=1.9.0 deepface 0.0.23 depends on tensorflow>=1.9.0 deepface 0.0.22 depends on tensorflow>=1.9.0 deepface 0.0.21 depends on tensorflow>=1.9.0 deepface 0.0.20 depends on tensorflow>=1.9.0 deepface 0.0.19 depends on tensorflow>=1.9.0 deepface 0.0.18 depends on tensorflow>=1.9.0 deepface 0.0.16 depends on tensorflow>=1.9.0 deepface 0.0.15 depends on tensorflow>=1.9.0 deepface 0.0.14 depends on tensorflow>=1.9.0 deepface 0.0.13 depends on tensorflow>=1.9.0 deepface 0.0.12 depends on tensorflow>=1.9.0 deepface 0.0.11 depends on tensorflow>=1.9.0 deepface 0.0.10 depends on tensorflow>=1.9.0 deepface 0.0.9 depends on tensorflow>=1.9.0 deepface 0.0.7 depends on tensorflow>=1.9.0 deepface 0.0.6 depends on tensorflow>=1.9.0 deepface 0.0.5 depends on tensorflow>=1.9.0 deepface 0.0.4 depends on tensorflow>=1.9.0 deepface 0.0.3 depends on tensorflow>=1.9.0 deepface 0.0.2 depends on tensorflow>=1.9.0 deepface 0.0.1 depends on tensorflow>=1.9.0 To fix this you could try to: 1. loosen the range of package versions you've specified 2. remove package versions to allow pip to attempt to solve the dependency conflict ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts 此时我应该怎么在终端输入指令
最新发布
07-08
<think>我们正在处理用户安装deepface时可能遇到的TensorFlow依赖冲突问题。根据引用[1],deepface是一个高级人脸识别库,它内部可能封装了多种后端,包括TensorFlow。因此,解决TensorFlow的依赖冲突是安装deepface的关键。 常见问题原因: 1. deepface对TensorFlow的版本有特定要求,可能与用户环境中已安装的TensorFlow版本冲突。 2. 用户可能同时安装了tensorflow和tensorflow-gpu,导致冲突。 3. 其他包可能依赖与deepface所需的TensorFlow版本不兼容的版本。 解决步骤: 步骤1:明确deepface的依赖要求 我们可以查看deepface的官方文档或PyPI页面,了解其支持的TensorFlow版本。但为了快速解决问题,我们可以尝试使用最新的deepface版本,并注意其依赖关系。 步骤2:创建新的虚拟环境(推荐) 为了避免与现有环境冲突,建议创建一个新的虚拟环境。 对于conda用户: ```bash conda create -n deepface_env python=3.8 # 建议使用Python3.8,因为TensorFlow的兼容性较好 conda activate deepface_env ``` 对于venv用户(Windows): ```bash python -m venv deepface_env deepface_env\Scripts\activate ``` 步骤3:安装deepface并处理依赖 在虚拟环境中,尝试安装deepface。由于deepface可能会自动安装其依赖,包括TensorFlow,我们可以先尝试直接安装: ```bash pip install deepface ``` 如果安装过程中出现TensorFlow依赖冲突,我们可以尝试以下方法: 方法1:让pip自动解决依赖(升级pip) 首先确保pip是最新的: ```bash pip install --upgrade pip ``` 然后再次尝试安装deepface。 方法2:指定TensorFlow版本 如果自动解决失败,我们可以尝试安装与deepface兼容的TensorFlow版本。根据经验,deepface通常支持较新的TensorFlow 2.x版本。我们可以尝试安装TensorFlow 2.10.0(这是支持Python 3.8的最后一个TensorFlow 2.x版本)或更早的版本。 首先安装特定版本的TensorFlow,然后再安装deepface: ```bash pip install tensorflow==2.10.0 pip install deepface ``` 或者,如果deepface需要更高版本的TensorFlow,我们可以尝试安装较新的版本(注意:TensorFlow 2.10之后不再支持GPU,但deepface可能不需要最新的TensorFlow)。 方法3:使用--no-deps选项 如果上述方法都失败,我们可以尝试先安装deepface而不安装依赖,然后手动安装依赖: ```bash pip install deepface --no-deps ``` 然后根据deepface的依赖要求(查看setup.py或requirements.txt)手动安装依赖。但这种方法较为复杂,不推荐。 步骤4:验证安装 安装完成后,运行一个简单的deepface程序来验证: ```python from deepface import DeepFace print(DeepFace.verify("img1.jpg", "img2.jpg")) ``` 如果出现任何错误,请根据错误信息进一步解决。 步骤5:处理常见错误 错误1:找不到CUDA(如果使用GPU) 如果使用GPU版本的TensorFlow,需要确保系统有匹配的CUDA和cuDNN版本。TensorFlow 2.10.0需要CUDA 11.2和cuDNN 8.1.0。如果没有GPU,则使用CPU版本即可。 错误2:其他依赖冲突 如果还有其他包冲突,可以使用以下命令查看冲突: ```bash pip check ``` 然后根据提示,升级或降级相关包。 替代方案: 如果上述方法都无法解决,可以考虑使用Docker来运行deepface,以避免环境冲突。 示例Dockerfile: ```dockerfile FROM python:3.8-slim RUN pip install deepface ``` 构建并运行: ```bash docker build -t deepface . docker run -it deepface python -c "from deepface import DeepFace; print(DeepFace.verify('img1.jpg','img2.jpg'))" ``` 注意:在Docker中运行需要将图像文件挂载到容器中。 总结: 解决deepface的TensorFlow依赖冲突的关键是隔离环境并安装兼容的TensorFlow版本。推荐使用虚拟环境,并安装TensorFlow 2.10.0(或根据deepface要求选择版本)。如果问题仍然存在,考虑使用Docker。 相关问题: §§相关问题§§ 1. 如何查看当前环境中已安装的包及其版本? 2. 如何卸载Python包及其所有依赖? 3. 如何解决多个Python包之间的依赖冲突? 4. 使用Docker运行Python项目有哪些优势?</think>### 解决 DeepFace 安装时的 TensorFlow 依赖冲突问题 #### 问题根源分析 DeepFace 依赖 TensorFlow,但两者版本要求可能冲突[^1]。主要问题包括: 1. **版本范围不匹配**:DeepFace 需要特定 TensorFlow 版本范围(通常 2.x) 2. **依赖链冲突**:其他已安装包(如 Keras, NumPy)版本与 TensorFlow 不兼容 3. **环境污染**:全局 Python 环境存在多个 TensorFlow 版本残留 #### 分步解决方案 ##### ✅ 方案一:创建纯净虚拟环境(推荐) ```powershell # 创建新环境(Python 3.8 兼容性最佳) python -m venv deepface_env deepface_env\Scripts\activate # 激活环境 # 先安装 TensorFlow 2.10(DeepFace 兼容版本) pip install tensorflow==2.10.0 # 再安装 DeepFace pip install deepface ``` > **验证**:`python -c "from deepface import DeepFace; print(DeepFace.__version__)"` ##### ✅ 方案二:依赖约束安装 ```bash # 强制使用兼容的依赖组合 pip install deepface tensorflow==2.10.0 numpy==1.23.0 opencv-python==4.6.0.66 ``` > **说明**:通过显式指定核心依赖版本避免冲突 ##### ✅ 方案三:依赖树分析解决 ```bash # 1. 检查冲突依赖 pip check # 2. 生成依赖树(需安装 pipdeptree) pip install pipdeptree pipdeptree --warn silence | findstr "tensorflow" # 3. 卸载冲突包 pip uninstall -y $(pip freeze | findstr "keras|tensorflow|numpy") # 4. 重新安装 pip install --no-deps deepface # 先不装依赖 pip install tensorflow==2.10.0 # 手动补依赖 ``` #### 常见冲突处理表 | 冲突包 | 解决方案 | 兼容版本 | |--------------|-----------------------------------|-----------------------| | Keras | `pip uninstall keras; pip install keras==2.10.0` | 需匹配 TensorFlow 版本 | | NumPy | `pip install numpy==1.23.0 --force-reinstall` | 避免 ≥1.24 版本 | | OpenCV | `pip install opencv-python==4.6.0.66` | 兼容 TF 2.x | | h5py | `pip install h5py==3.1.0` | 解决 HDF5 格式冲突 | #### 备选方案:使用轻量级替代 若无法解决依赖冲突,可考虑: ```bash # 安装不依赖 TensorFlow 的替代库 pip install face-recognition # 基于 dlib[^1] ``` > 注意:face-recognition 精度和功能弱于 DeepFace,适合简单场景 #### 验证安装成功 ```python from deepface import DeepFace # 测试基础功能 result = DeepFace.analyze(img_path="photo.jpg", actions=['age', 'emotion']) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值