使用tensorwatchimport pdb import tensorwatch as tw import torchvision.models alexnet_model = torchv可视化

本文介绍如何使用TensorWatch库来绘制PyTorch中AlexNet模型的结构,并保存为图片。通过导入必要的库,设置模型,调用draw_model函数并指定输入尺寸,最后将绘制的模型图保存为jpg格式。
部署运行你感兴趣的模型镜像

pip install tensorwatch

使用:

import pdb
import tensorwatch as tw
import torchvision.models
alexnet_model = torchvision.models.alexnet()
#pdb.set_trace()
aa=tw.draw_model(alexnet_model, [1, 3, 224, 224])
#dd=tw.model_stats(alexnet_model, [1, 3, 224, 224])
aa.save('22.jpg')

结果是:

解决方法:https://blog.youkuaiyun.com/qq_35878757/article/details/103561923

降tensorwatch = 0.8.7 

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

# coding=utf-8 # 编译日期:2025-03-07 16:42:37 # 版权所有:www.i-search.com.cn import ubpa.init_input as iinput from ubpa.base_util import StdOutHook, ExceptionHandler import ubpa.itools.rpa_str as rpa_str import ubpa.ibox as ibox import ubpa.ibrowse as ibrowse import time import pdb from ubpa.ilog import ILog import getopt from sys import argv import sys import os import datetime as is_datetime import pandas from ubpa.base_img import * import ubpa.iplatform as iplatform class NewProject1: def __init__(self,**kwargs): self.__logger = ILog(__file__) self.path = set_img_res_path(__file__) self.robot_no = '' self.proc_no = '' self.job_no = '' self.input_arg = '' if('robot_no' in kwargs.keys()): self.robot_no = kwargs['robot_no'] if('proc_no' in kwargs.keys()): self.proc_no = kwargs['proc_no'] if('job_no' in kwargs.keys()): self.job_no = kwargs['job_no'] ILog.JOB_NO, ILog.OLD_STDOUT = self.job_no, sys.stdout sys.stdout = StdOutHook(self.job_no, sys.stdout) ExceptionHandler.JOB_NO, ExceptionHandler.OLD_STDERR = self.job_no, sys.stderr sys.excepthook = ExceptionHandler.handle_exception if('input_arg' in kwargs.keys()): self.input_arg = kwargs['input_arg'] if(len(self.input_arg) <= 0): self.input_arg = iinput.load_init(__file__) if self.input_arg is None: sys.exit(0) self.web=None def Main(self): lv_1=None page_source=None links=[] link_text=None #打开浏览器/网页对象 self.__logger.dlogs(job_no=self.job_no,logmsg='Flow:Main,StepNodeTag:2025030715322522292,Title:打开浏览器/网页对象,Note:打开一个示例网址') tvar_20250307153225256100=ibrowse.open_web(browser_type='edge',url='https://owner.jiangongdata.com/register',maximum=0) print('[Main] [打开浏览器/网页对象] [SNTag:2025030715322522292] 返回值:[' + str(type(tvar_20250
最新发布
03-08
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值