Tips

本文介绍了Ruby语言的一些核心概念和编程技巧,包括方法返回值、类方法、实例变量、私有和受保护的方法、模块与类的区别、正则表达式的创建方式等。通过具体的代码示例,展示了如何使用这些特性进行高效编程。

The value returned by a Ruby
method is the value of the last expression evaluated, so we can get rid of
the temporary variable and the return statement altogether.

Prefixing a method name with self. (as we do on line 5) makes it a class
method: it can be called on the class generally.


Instance variables are not directly accessible outside the class. To make
them available, write methods that return their values.
class Greeter
def initialize(name)
@name = name
end
def name
@name
end
def name=(new_name)
@name = new_name
end
end

 

The private directive is the strictest; private methods can be called only
from within the same instance. Protected methods can be called in the
same instance and by other instances of the same class and its subclasses.

Modules are similar to classes in that they hold a collection of methods,
constants, and other module and class definitions. Unlike classes, you
cannot create objects based on modules.


In Ruby,
that’s not the case; nil is an object, just like any other, that happens to
represent nothing.

So an ORM layer maps tables to classes, rows to objects, and columns to
attributes of those objects. Class methods are used to perform table-level
operations, and instance methods perform operations on the individual
rows.
By relying on convention and starting with sensible defaults,
Active Record minimizes the amount of configuration that developers perform.


Ruby statement modifiers are a useful shortcut if the body of an if or while statement
statement is just a single expression. Simply write the expression, followed
by if or while and the condition.
puts "Danger, Will Robinson" if radiation > 3000


In Ruby, you typically create a regular expression by
writing /pattern/ or %r{pattern}.


Marshaling Objects



内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值