Best Time to Buy and Sell Stock(121) - easy

本文探讨了寻找股票买卖最佳时机的算法,通过三种不同的思路解析如何在给定的价格数组中找到最大的利润。第一种方法使用两层循环进行暴力求解,但效率低下;第二种方法通过确定两个极值来优化搜索过程;第三种方法则应用动态规划思想,提高了算法的时间效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

121— Best Time to Buy and Sell Stock

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Note that you cannot sell a stock before you buy one.

Example1:

Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Not 7-1 = 6, as selling price needs to be larger than buying price.

Example2:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

思路1:
  • 暴力求解, 使用两层循环遍历所有的可能.
  • Leetcode提交超时(Time Limit Exceeded)
C++代码:
class Solution {
public:
  int maxProfit(vector<int>& prices) {
    int in,out;
    int dif = 0;
    for(int in = 0; in < prices.size() - 1; in++) {
      for(int out = in+1 ; out < prices.size(); out++) {
        if(prices[out]-prices[in] > dif ) dif = prices[out]-prices[in];
      }
    }
    return dif;
  }
};
Complexity Analysis:

Time complexity : O(n2n^{2}n2).
Space complexity : O(111).


思路2:
  • 实质上就是确定两个极值. 确保极大值在极小值后面即可.
C++代码:
class Solution {
public:
   int maxProfit(vector<int>& prices) {
    int currentMin = INT_MAX,currentDif = 0;
    for(int i = 0; i< prices.size();i++) {
      if(prices[i] < currentMin) currentMin = prices[i];
      else if(prices[i] - currentMin >  currentDif) currentDif = prices[i] - currentMin;
    }
    return currentDif;
  }
};
Complexity Analysis:

Time complexity : O(nnn).
Space complexity : O(111).


思路3:
  • 动态规划思想, 对于第n天最大利润为max(第n-1天时最大利润, 第n天价格 - 当前最低价格).
C++代码:
int maxProfit(vector<int>& prices) {
    int len = prices.size();
    if(len < 2) return 0;
    vector<int> table(len,0);
    int currentMin = prices[0];
    for(int i = 1; i < len; i++) {
      if(currentMin > prices[i]) currentMin = prices[i];
      table[i] = max(table[i-1],prices[i]-currentMin);
    }
    return table[len-1];
  }
Complexity Analysis:

Time complexity : O(nnn).
Space complexity : O(nnn).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值