10.1
一个不稳定的运放电路将会得到失真的瞬态响应,输出波形不是预期的结果。当输入或者负载变化时,这就会引起输出较大的过冲和失调,甚至导致持续的振荡波形。通常稳定性问题源于在运放输出或者反相输入端连接了电容。
上图分压缓冲电路用于将 2.5 伏直流作为参考电压输出,但是不稳定的设计使得直流参考信号变成了一个正弦波。虽然此电路原本工作于直流输入和输出,但在输入电源输出的一个扰动都会使运放电路产生振荡,因此不论电路工作的频率如何,我们都推荐对电路进行稳定性分析。

运放输出信号与反馈信号之间的延迟过大是一种直观的方式来看待振荡问题。通过观察运放输出的信号Vopa 和反相端的输入信号 Vfb 可以直观的看出反馈延迟带来的后果。

实际上很多标准的运算放大电路,由于运放的不理想性 ,再加上外围元件的影响会产生同样的情况。例如运放的开环输出阻抗Ro与电路的容性负载Cload作用形成了延迟电路。
另一个延时环节是由反馈电阻Feedback resistance Rf与运放的并联输入电容 input capacitors Cin和实际pcb布局的寄生电容产生作用形成延迟电路。由任何一个原因导致的延迟如果不采取必要的措施都可能导致稳定性的问题。
以下是常见的有稳定性问题的电路:

这些电路的共同点都是输出到反馈端形成了不需要的延时。根据对运放环路造成的问题,这些延时可以分为两种:第一种在运放输出端有容性负载或者因寄生电容的负载影响运放的开环增益。这种类型的电路包括参考电压缓冲电路、线缆驱动电路、MOSFET栅极驱动电路等等。第二种在输入端通过运放输入电容和大反馈电阻的作用影响反馈网络。这种类型的电路包括跨阻放大器,低功耗电路,在输入端引入瞬态抑制元件的电路等等。

虽然解决稳定性问题需要实践和经验,但在实验室中我们可以直接的观察到它们,能输出阶跃的信号发生器和示波器是必备的,输入阶跃信号可由系统中的 DAC 产生或者来自外部的信号发生器。如果条件允许,频谱分析仪和网络分析仪也可以用于稳定性分析。
最严重的稳定性问题会导致尽管没有输入信号,仍然会输出持续的振荡信号。电路的不稳定输出不一定表现为我们所期望的正弦波,有可能会输出一些看似很奇怪的信号,虽然在这里没有显示出来。
不稳定的直流输出或者出乎意料的失真也会是稳定性问题的一种表现。

除了示波器之外,由于频谱分析仪可用于测量信号和幅频特性,我们也可以用它来诊断不稳定性问题。图示将电路仿真的幅频、相频响应结果与实际电路的测试结果进行对比,增益的峰值、相移的剧烈变化或者出乎意料的增益都是不稳定性问题的标志。当尝试测量一个不稳定电路的幅频或者相移时,常见的测量响应是跳动或是不清楚的,且在全频率范围内难以测量,这些微小的信号同样是不稳定的标志。
总结一下,本视频旨在讨论运放的稳定性问题,具有稳定性问题的常见电路,以及如何在实验室中识别稳定性问题。在接下来的视频中,我们会涉及到波特图基本的稳定性理论,在 SPICE 中仿真运行稳定性电路以及常用的补偿技术。
10.2
在本次课程我们将介绍运放稳定性分析的第二部分,在之前的视频中我们讨论了运放稳定性问题的产生原因,以及如何使用常见的仪器来识别稳定性的问题。在本节的视频中我们将会结合相位裕度和闭合速率,分析回顾波特图和基本的稳定性理论,深入理解这些内容,对于学习接下来的视频是非常重要的。

本张图片所示来源于运放带宽分析的视频1,当中讲到了极点相关的公式,以及极点在波特图上的振幅和相位的响应。极点使得在幅频响应中在截止频率 fp之后以-20dB/dec 的速率下降,极点也使得在截止频点 fp 的前后都出现了相移,最大造成 -90 度的相移。
在截止频率 fp 处幅度会衰减3dB,相位会偏移-45度。总的来说,极点在大约 2.5个十倍频处造成了-90 度的偏移,在 fp 前十倍频程相移 -5.7 度,在 fp 后十倍频程相移 -84.3 度。

上图来源于运放带宽分析视频1。当中讲到了零点相关的公式以及零点在波特图上的振幅和相位的响应。零点使得在幅频响应中在截止频率fz之后以+20dB/dec的速率上升,零点也使得在截止频点fz的前后都出现相移,最大造成+90度的相移。在截止频率fz 处 ,幅度会提升3dB ,相位会偏移+45度,总的来说,极点在2.5个十倍频程处造成了+90度的偏移,在fz前十倍频程相移+5.7度,在fz后十倍频程相移+84.3度。
在这个简化的稳定的模型中,给到运放的差分输入经过开环增益传输到运放的输出端,然后接着通过运放的输出电阻到达相外的输出节点。
open loop gain 开环增益 AOL 表示运放能给差分输入信号提供的最大增益。对于理想运放来说AOL是无限大且不受频率限制的。现在的运放的开环增益低频段可以做到100万或者120dB。
Open loop output impedance 开环输出阻抗 Zo是指开环情况下,从运放输出端测试所得。Zo是运放内部输出级决定的,不随闭环增益变化而变化,可以理解为运放本征参数。
Zo 与运放工作在闭环模式下的输出阻抗 Zout 不能混淆,Zout 是由 Zo 、Alo 以及电路的设计决定的。它定义为放大器在指定闭环增益、指定频率时,输出电压Vout与输出电流Iout的比值
在本视频中为了集中讨论稳定性的相关问题 ,Zo在全频段内看做成纯阻性。实际上对于部分新的轨至轨运放 ,Zo会随着频率的变化而变化,从而使得稳定性的分析变得更加复杂。

为了控制运放的开环增益,需要在输出

本文深入探讨了运算放大器的稳定性问题,包括不稳定性原因、波特图分析、相位裕度和闭合速率。讲解了如何通过SPICE仿真和实验室测试识别稳定性问题,以及容性负载对稳定性的影响。介绍了隔离电阻(Riso)和双反馈补偿方法,以解决容性负载导致的稳定性问题,并分析了多反馈电路的开环仿真方法。
最低0.47元/天 解锁文章
7871

被折叠的 条评论
为什么被折叠?



