题意:两题意思差不多,都是给你一个序列,然后求最少需要改变多少个数字,使得成为一个最长不升,或者最长不降子序列。
当然3671是只能升序,所以更简单一点。
然后就没有什么了,用二分的方法求LIS即可。
贴一下3670,3671几乎没变化,只需将求最长不升的那部分去掉即可。
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
using namespace std;
int a[33333] ;int n ;
int qe[33333] ;
int LIS(int *x ){
int head = 0 ;mem(qe ,0) ;
for (int i = 0 ; i < n ; i ++ ){
if(head == 0 || x[i] >= qe[head]){
qe[++ head] = x[i] ;
}
else {
int r = head , l = 1 ;
while(r >= l){
int mid = l + r >> 1 ;
if(qe[mid] <= x[i])l = mid + 1 ;
else r = mid - 1 ;
}
qe[l] = x[i] ;
}
}
return head ;
}
int main() {
cin >> n ;
for (int i = 0 ; i < n ; i ++ ){
scanf("%d",&a[i]) ;
}
int x = LIS(a) ;
reverse(a , a + n) ;
int y = LIS(a) ;
cout << n - max(x , y) << endl;
return 0;
}