Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路:看到这个题目第一想法是记录所有数的乘积,每次除以对应的数(考虑分母为0)即可,但是题目要求不能使用除法,且时间复杂度为O(n),因此换个思路,用left以及right两个数组来解决,left[i]存储到它位置之前的数的乘积,right[i]存储它位置之后所有数的乘积,然后将left[i] * right[i]即可,进一步降低空间复杂度,可以保留right数组,left数组用一个数left代替,并且每次更新left的值即可,代码如下:
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int len = nums.size();
vector<int> ret(len);
if(len < 2)
return nums;
ret[len-1] = 1;
int left = 1, i;
for(i = len - 1; i > 0; --i){
ret[i-1] = ret[i] * nums[i];
}
for(i = 0; i < len; ++i){
ret[i] *= left;
left *= nums[i];
}
return ret;
}
};