1382 - Distant Galaxy
Time limit: 3.000 seconds
You are observing a distant galaxy using a telescope above the Astronomy Tower, and you think that a rectangle drawn in that galaxy whose edges are parallel to coordinate axes and contain maximum star systems on its edges has a great deal to do with the mysteries of universe. However you do not have the laptop with you, thus you have written the coordinates of all star systems down on a piece of paper and decide to work out the result later. Can you finish this task?

Input
There are multiple test cases in the input file. Each test case starts with one integer
N , (1N
100),
the number of star systems on the telescope. N lines follow, each line consists of two integers: the
X and Y coordinates of the
K-th planet system. The absolute value of any coordinate is no more than
109, and you can assume that the planets are arbitrarily distributed in the universe.
N = 0 indicates the end of input file and should not be processed by your program.
Output
For each test case, output the maximum value you have found on a single line in the format as indicated in the sample output.
Sample Input
10 2 3 9 2 7 4 3 4 5 7 1 5 10 4 10 6 11 4 4 6 0
Sample Output
Case 1: 7
解题报告: 绝对的好题目。
《训练指南》上说的很清楚了,不说啥了。总之,仔细体会,必有收获。代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <string>
using namespace std;
#define ff(i, n) for(int i=0;i<(n);i++)
#define fff(i, n, m) for(int i=(n);i<=(m);i++)
#define dff(i, n, m) for(int i=(n);i>=(m);i--)
#define mem(a) memset((a), 0, sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
void work();
int main()
{
#ifdef ACM
freopen("in.txt", "r", stdin);
// freopen("in.txt", "w", stdout);
#endif // ACM
work();
}
/*****************************************/
struct Point
{
int x, y;
bool operator<(const Point & cmp) const
{
return x < cmp.x;
}
} p[111];
int n, m, y[111], l[111], on[111], on2[111];
int solve()
{
sort(p, p+n);
sort(y, y+n);
m = unique(y, y+n)-y;
if(m <= 2) return n;
int ans = 0;
ff(a, m) fff(b, a+1, m)
{
int miny = y[a], maxy = y[b];
int k = 0;
ff(i, n)
{
if(i==0 || p[i].x != p[i-1].x)
{
k++;
on[k] = on2[k] = 0;
l[k] = l[k-1]+on2[k-1]-on[k-1];
}
if(p[i].y > miny && p[i].y < maxy) on[k]++;
if(p[i].y >= miny && p[i].y <= maxy) on2[k]++;
}
int M = 0;
fff(j, 1, k)
{
ans = max(ans, l[j]+on2[j]+M);
M = max(M, on[j]-l[j]);
}
}
return ans;
}
void work()
{
int cas = 1;
while(~scanf("%d", &n) && n)
{
ff(i, n)
{
scanf("%d%d", &p[i].x, &p[i].y);
y[i] = p[i].y;
}
printf("Case %d: %d\n", cas++, solve());
}
}