Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 2714 | Accepted: 1532 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive
root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
解题报告:求一个奇素数的原根。原根的概率数论里说过,简单来说一个数原根的数量就是phi(phi(n))。
素数n的欧拉函数为n-1,所以本题直接求phi(n-1)即可。代码如下:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int epi(int n)
{
int m=(int)(sqrt(n+0.0)+0.5);
int phi=n;
for(int i=2;i<=m;i++) if(n%i==0)
{
phi=phi*(i-1)/i;
while(n%i==0) n/=i;
}
if(n>1) phi=phi*(n-1)/n;
return phi;
}
int main()
{
int n;
while(~scanf("%d", &n))
printf("%d\n", epi(n-1));
}