uva657 The die is cast

本文介绍了一种用于识别图像中骰子点数的算法。该算法通过深度优先搜索(DFS)来识别每个骰子及其上面的点数,适用于游戏中的在线骰子识别,确保了游戏的公平性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B - The die is cast
Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu

Description

Download as PDF

InterGames is a high-tech startup company that specializes in developing technology that allows users to play games over the Internet. A market analysis has alerted them to the fact that games of chance are pretty popular among their potential customers. Be it Monopoly, ludo or backgammon, most of these games involve throwing dice at some stage of the game.

Of course, it would be unreasonable if players were allowed to throw their dice and then enter the result into the computer, since cheating would be way to easy. So, instead, InterGames has decided to supply their users with a camera that takes a picture of the thrown dice, analyzes the picture and then transmits the outcome of the throw automatically.

For this they desperately need a program that, given an image containing several dice, determines the numbers of dots on the dice.

We make the following assumptions about the input images. The images contain only three dif- ferent pixel values: for the background, the dice and the dots on the dice. We consider two pixels connected if they share an edge - meeting at a corner is not enough. In the figure, pixels A and B are connected, but B and C are not.

A set S of pixels is connected if for every pair (a,b) of pixels in S, there is a sequence $a_1, a_2, \dots, a_k$ in S such that a = a1 and b = ak , and ai and ai+1 are connected for $1 \le i < k$.

We consider all maximally connected sets consisting solely of non-background pixels to be dice. `Maximally connected' means that you cannot add any other non-background pixels to the set without making it dis-connected. Likewise we consider every maximal connected set of dot pixels to form a dot.

Input 

The input consists of pictures of several dice throws. Each picture description starts with a line containing two numbers w and h, the width and height of the picture, respectively. These values satisfy $5 \leŸw,h \le 50$.

The following h lines contain w characters each. The characters can be: ``.'' for a background pixel, ``*'' for a pixel of a die, and ``X'' for a pixel of a die's dot.

Dice may have different sizes and not be entirely square due to optical distortion. The picture will contain at least one die, and the numbers of dots per die is between 1 and 6, inclusive.

The input is terminated by a picture starting with w = h = 0, which should not be processed.

Output 

For each throw of dice, first output its number. Then output the number of dots on the dice in the picture, sorted in increasing order.

Print a blank line after each test case.

Sample Input 

30 15
..............................
..............................
...............*..............
...*****......****............
...*X***.....**X***...........
...*****....***X**............
...***X*.....****.............
...*****.......*..............
..............................
........***........******.....
.......**X****.....*X**X*.....
......*******......******.....
.....****X**.......*X**X*.....
........***........******.....
..............................
0 0

Sample Output 

Throw 1
1 2 2 4




和油田那题差不多

先输入整个图

dfs(*)

找其中的X

然后在dfs(X)

记得排序




#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char map[100][100];
int cnt;

int cmp(void const *a, void const *b){
	return *(int*)a - *(int*)b;
}

void dfsX(int x, int y){
	if (map[x][y] != 'X')
		return ;
	else
		map[x][y] = '.';
	dfsX(x - 1, y);
	dfsX(x, y - 1);
	dfsX(x, y + 1);
	dfsX(x + 1, y);
}

void dfs(int x, int y){
	if (map[x][y] == '.')
		return ;
	if (map[x][y] == 'X') {
		dfsX(x, y);
		cnt++;
	}
	map[x][y] = '.';
	dfs(x - 1, y);
	dfs(x, y - 1);
	dfs(x, y + 1);
	dfs(x + 1, y);
}

int main(){
	int w, h, cas = 1, count, sum[100];
	while (scanf("%d%d", &w, &h) != EOF) {
		if (w == 0 && h == 0)
			break;
		count = 0;
		memset(map, '.', sizeof(map));
		for (int i = 1; i <= h; i++) {
			getchar();
			for (int j = 1; j <= w; j++)
				scanf("%c", &map[i][j]);
		}
		for (int i = 1; i <= h; i++)
			for (int j = 1; j <= w; j++)
				if(map[i][j] == '*') {
					cnt = 0;
					dfs(i, j);
					sum[count++] = cnt;
				}
		qsort(sum, count, sizeof(sum[0]), cmp);
		printf("Throw %d\n", cas++);
		for (int i = 0; i < count; i++) {
			if (i)
				printf(" ");
			printf("%d", sum[i]);
		}
		printf("\n\n");
	}
	return 0;
}


CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值