在跑完SSD网络之后,证明caffe这一套框架都已经能正常工作了,接下来就可以训练自己的数据了
这篇文章讲的是如何从一堆jpg图片中,训练目标,并得到最终的caffemodel文件
一、准备数据集
我们首先要准备好要训练的目标的图片,这个用手机拍照就可以,不过要拍个几千几万张图片也是很累的。
你也可以选择录像,然后再用代码从一个视频文件中按帧提取,保存成jpg图像,这样工作量就少了很多。
这两种方法可以得到大量的jpg图片,一般都会有几万个吧,名字当然也要有讲究,不能随便命名,要用数字,从1开始往后排,因为一会儿处理数据方便。
而我呢,嫌麻烦,用的别的方法:使用TLD算法为深度学习准备数据集
jpg图片准备好后,在/home/.*(服务器名称)/data/中建RMinfantry文件夹,然后再在RMinfantry里面建Annotations、ImageSets、JPEGImages、lmdb四个文件夹,再在ImageSets下面建Main文件夹。建立好文件夹后,将所有的jpg图片移到JPEGImages文件夹中。
RMinfantry文件夹是指明这个项目的名称的,Annotations是保存标签文件(xml)的,ImageSets/Main是用来保存生成的训练集和测试集的,JPEGImages是保存jpg图片的,lmdb是用来保存生成的lmdb文件的
接下来要使用labelImg来对jpg图片贴标签,创建xml文件,这些xml文件的文件名要和jpg一一对应,保存到Annotations文件夹中
不会使用labelImg的请看制作数据集标签--使用labelImg
二、处理数据集
数据集已经准备好了,接下来就要使用脚本去处理这些数据了,在ImageSets/Main中写一个python脚本命名为create_data.py,把刚才准备的jpg图片分成训练集和测试集,代码如下,把JPGfile_dir和TXTfile_dir改成自己的路径,trainval_ratio是训练集所占的比例,也可以修改
import os
import random
# 3 parameters, can be set
JPGfile_dir = '/home/kangyi/data/RMinfantry/JPEGImages'
TXTfile_dir = '/home/kangyi/data/RMinfantry/ImageSets/Main'
trainval_ratio = 0.85
# push all names of images into a list
list_all = []
for root, dirs, files in os.walk(JPGfile_dir):
for file in files:
if os.path.splitext(file)[1] == '.jpg':
list_all.append(os.path.splitext(file)[0])
print("image set is {} in total.".format(list_all.__len__()))
# pick up some for training and others for testing randomly
trainval_size = (int)(round(list_all.__len__() * trainval_ratio))
test_size = list_all.__len__() - trainval_size
print("trainval set is {} in total.".format(trainval_size))
print("test set is {} in total.".format(test_size))
all_index = range(list_all.__len__())
trainval_index = random.sample(all_index, trainval_size)
test_index = [x for x in all_index if x not in trainval_index]
# build trainval.txt
with open(TXTfile_dir+'/trainval.txt', 'w') as f:
for i in trainval_index:
f.write(list_all[i])
f.write('\n')
f.close()
# build test.txt
with open(TXTfile_dir+'/test.txt', 'w') as f:
for i in test_index:
f.write(list_all[i])
f.write('\n')
f.close()
通过以上脚本,创建了2个txt文件,里面包含了测试集和训练集的文件的文件名
接着,我们在caffe/data/中建立文件夹RMinfantry,然后将caffe/data/VOC0712/中的create_data.sh、create_list.sh和labelmap_voc.prototxt拷贝到RMinfantry中,重命名为create_data_RMinfantry.sh、create_list_RMinfantry.sh和labelmap_RMinfantry.prototxt
修改后的三个文件的代码如下
create_data_RMinfantry.sh:
修改了dataset_name, mapfile
cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd )
root_dir=$cur_dir/../..
cd $root_dir
redo=1
data_root_dir="$HOME/data"
dataset_name="RMinfantry"
mapfile="$root_dir/data/$dataset_name/labelmap_RMinfantry.prototxt"
anno_type="detection"
db="lmdb"
min_dim=0
max_dim=0
width=512
height=512
extra_cmd="--encode-type=jpg --encoded"
if [ $redo ]
then
extra_cmd="$extra_cmd --redo"
fi
for subset in test trainval
do
python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name
done
create_list_RMinfantry.sh:
修改了for name in RMinfantry
#!/bin/bash
root_dir=$HOME/data
sub_dir=ImageSets/Main
bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
for dataset in trainval test
do
dst_file=$bash_dir/$dataset.txt
if [ -f $dst_file ]
then
rm -f $dst_file
fi
for name in RMinfantry
do
if [[ $dataset == "test" && $name == "VOC2012" ]]
then
continue
fi
echo "Create list for $name $dataset..."
dataset_file=$root_dir/$name/$sub_dir/$dataset.txt
img_file=$bash_dir/$dataset"_img.txt"
cp $dataset_file $img_file
sed -i "s/^/$name\/JPEGImages\//g" $img_file
sed -i "s/$/.jpg/g" $img_file
label_file=$bash_dir/$dataset"_label.txt"
cp $dataset_file $label_file
sed -i "s/^/$name\/Annotations\//g" $label_file
sed -i "s/$/.xml/g" $label_file
paste -d' ' $img_file $label_file >> $dst_file
rm -f $label_file
rm -f $img_file
done
# Generate image name and size infomation.
if [ $dataset == "test" ]
then
$bash_dir/../../build/tools/get_image_size $root_dir $dst_file $bash_dir/$dataset"_name_size.txt"
fi
# Shuffle trainval file.
if [ $dataset == "trainval" ]
then
rand_file=$dst_file.random
cat $dst_file | perl -MList::Util=shuffle -e 'print shuffle(<STDIN>);' > $rand_file
mv $rand_file $dst_file
fi
done
labelmap_RMinfantry.prototxt:
这里根据自己的情况修改,有多少个分类就写多少个label,不过label 0 永远是背景,这是额外的,我这里懒得修改name了,就用的旧文件的name,只是修改了display_name,我只训练网络去识别RM步兵,所以只有label 1
item {
name: "none_of_the_above"
label: 0
display_name: "background"
}
item {
name: "person"
label: 1
display_name: "infantry"
}
这三个文件就是用来创建lmdb文件的
把这些都准备好之后,在终端输入
cd /home/(服务器名字)/caffe
python /home/(服务器名字)/data/RMinfantry/ImageSets/Main/create_data.py
./data/RMinfantry/create_list_RMinfantry.sh
./data/RMinfantry/create_data_RMinfantry.sh
这样我们就生成了我们想要的lmdb文件了
三、创建训练网络
在得到数据集之后,我们就要创建网络来进行训练了,创建方法和SSD官方提供的脚本一样,我们修改一下就好了,下面是我修改后的代码,大家对照这原来的文件开一下就知道了,修改完之后命名为ssd_pascal_RMinfantry.py
from __future__ import print_function
import caffe
from caffe.model_libs import *
from google.protobuf import text_format
import math
import os
import shutil
import stat
import subprocess
import sys
# Add extra layers on top of a "base" network (e.g. VGGNet or Inception).
def AddExtraLayers(net, use_batchnorm=True, lr_mult=1):
use_relu = True
# Add additional convolutional layers.
# 19 x 19
from_layer = net.keys()[-1]
# TODO(weiliu89): Construct the name using the last layer to avoid duplication.
# 10 x 10
out_layer = "conv6_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv6_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2,
lr_mult=lr_mult)
# 5 x 5
from_layer = out_layer
out_layer = "conv7_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv7_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2,
lr_mult=lr_mult)
# 3 x 3
from_layer = out_layer
out_layer = "conv8_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv8_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 0, 1,
lr_mult=lr_mult)
# 1 x 1
from_layer = out_layer
out_layer = "conv9_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv9_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 0, 1,
lr_mult=lr_mult)
return net
### Modify the following parameters accordingly ###
# The directory which contains the caffe code.
# We assume you are running the script at the CAFFE_ROOT.
caffe_root = os.getcwd()
# Set true if you want to start training right after generating all files.
run_soon = True
# Set true if you want to load from most recently saved snapshot.
# Otherwise, we will load from the pretrain_model defined below.
resume_training = False
# If true, Remove old model files.
remove_old_models = True
# The database file for training data. Created by data/VOC0712/create_data.sh
train_data = "examples/RMinfantry/RMinfantry_trainval_lmdb"
# The database file for testing data. Created by data/VOC0712/create_data.sh
test_data = "examples/RMinfantry/RMinfantry_test_lmdb"
# Specify the batch sampler.
resize_width = 300
resize_height = 300
resize = "{}x{}".format(resize_width, resize_height)
batch_sampler = [
{
'sampler': {
},
'max_trials': 1,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.1,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.3,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.5,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.7,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.9,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'max_jaccard_overlap': 1.0,
},
'max_trials': 50,
'max_sample': 1,
},
]
train_transform_param = {
'mirror': True,
'mean_value': [104, 117, 123],
'resize_param': {
'prob': 1,
'resize_mode': P.Resize.WARP,
'height': resize_height,
'width': resize_width,
'interp_mode': [
P.Resize.LINEAR,
P.Resize.AREA,
P.Resize.NEAREST,
P.Resize.CUBIC,
P.Resize.LANCZOS4,
],
},
'distort_param': {
'brightness_prob': 0.5,
'brightness_delta': 32,
'contrast_prob': 0.5,
'contrast_lower': 0.5,
'contrast_upper': 1.5,
'hue_prob': 0.5,
'hue_delta': 18,
'saturation_prob': 0.5,
'saturation_lower': 0.5,
'saturation_upper': 1.5,
'random_order_prob': 0.0,
},
'expand_param': {
'prob': 0.5,
'max_expand_ratio': 4.0,
},
'emit_constraint': {
'emit_type': caffe_pb2.EmitConstraint.CENTER,
}
}
test_transform_param = {
'mean_value': [104, 117, 123],
'resize_param': {
'prob': 1,
'resize_mode': P.Resize.WARP,
'height': resize_height,
'width': resize_width,
'interp_mode': [P.Resize.LINEAR],
},
}
# If true, use batch norm for all newly added layers.
# Currently only the non batch norm version has been tested.
use_batchnorm = False
lr_mult = 1
# Use different initial learning rate.
if use_batchnorm:
base_lr = 0.0004
else:
# A learning rate for batch_size = 1, num_gpus = 1.
base_lr = 0.00004
# Modify the job name if you want.
job_name = "SSD_RMinfantry_{}".format(resize)
# The name of the model. Modify it if you want.
model_name = "VGG_{}".format(job_name)
# Directory which stores the model .prototxt file.
save_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the snapshot of models.
snapshot_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the job script and log file.
job_dir = "jobs/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the detection results.
output_result_dir = "{}/data/VOCdevkit/results/VOC2007/{}/Main".format(os.environ['HOME'], job_name)
# model definition files.
train_net_file = "{}/train.prototxt".format(save_dir)
test_net_file = "{}/test.prototxt".format(save_dir)
deploy_net_file = "{}/deploy.prototxt".format(save_dir)
solver_file = "{}/solver.prototxt".format(save_dir)
# snapshot prefix.
snapshot_prefix = "{}/{}".format(snapshot_dir, model_name)
# job script path.
job_file = "{}/{}.sh".format(job_dir, model_name)
# Stores the test image names and sizes. Created by data/VOC0712/create_list.sh
name_size_file = "data/RMinfantry/test_name_size.txt"
# The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet.
pretrain_model = "models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel"
# Stores LabelMapItem.
label_map_file = "data/RMinfantry/labelmap_RMinfantry.prototxt"
# MultiBoxLoss parameters.
num_classes = 2
share_location = True
background_label_id=0
train_on_diff_gt = True
normalization_mode = P.Loss.VALID
code_type = P.PriorBox.CENTER_SIZE
ignore_cross_boundary_bbox = False
mining_type = P.MultiBoxLoss.MAX_NEGATIVE
neg_pos_ratio = 3.
loc_weight = (neg_pos_ratio + 1.) / 4.
multibox_loss_param = {
'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1,
'conf_loss_type': P.MultiBoxLoss.SOFTMAX,
'loc_weight': loc_weight,
'num_classes': num_classes,
'share_location': share_location,
'match_type': P.MultiBoxLoss.PER_PREDICTION,
'overlap_threshold': 0.5,
'use_prior_for_matching': True,
'background_label_id': background_label_id,
'use_difficult_gt': train_on_diff_gt,
'mining_type': mining_type,
'neg_pos_ratio': neg_pos_ratio,
'neg_overlap': 0.5,
'code_type': code_type,
'ignore_cross_boundary_bbox': ignore_cross_boundary_bbox,
}
loss_param = {
'normalization': normalization_mode,
}
# parameters for generating priors.
# minimum dimension of input image
min_dim = 300
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# conv9_2 ==> 1 x 1
mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']
# in percent %
min_ratio = 20
max_ratio = 90
step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2)))
min_sizes = []
max_sizes = []
for ratio in xrange(min_ratio, max_ratio + 1, step):
min_sizes.append(min_dim * ratio / 100.)
max_sizes.append(min_dim * (ratio + step) / 100.)
min_sizes = [min_dim * 10 / 100.] + min_sizes
max_sizes = [min_dim * 20 / 100.] + max_sizes
steps = [8, 16, 32, 64, 100, 300]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
# L2 normalize conv4_3.
normalizations = [20, -1, -1, -1, -1, -1]
# variance used to encode/decode prior bboxes.
if code_type == P.PriorBox.CENTER_SIZE:
prior_variance = [0.1, 0.1, 0.2, 0.2]
else:
prior_variance = [0.1]
flip = True
clip = False
# Solver parameters.
# Defining which GPUs to use.
gpus = "0"
gpulist = gpus.split(",")
num_gpus = len(gpulist)
# Divide the mini-batch to different GPUs.
batch_size = 16
accum_batch_size = 1
iter_size = accum_batch_size / batch_size
solver_mode = P.Solver.CPU
device_id = 0
batch_size_per_device = batch_size
if num_gpus > 0:
batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus))
iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus)))
solver_mode = P.Solver.GPU
device_id = int(gpulist[0])
if normalization_mode == P.Loss.NONE:
base_lr /= batch_size_per_device
elif normalization_mode == P.Loss.VALID:
base_lr *= 25. / loc_weight
elif normalization_mode == P.Loss.FULL:
# Roughly there are 2000 prior bboxes per image.
# TODO(weiliu89): Estimate the exact # of priors.
base_lr *= 2000.
# Evaluate on whole test set.
num_test_image = 1849
test_batch_size = 8
# Ideally test_batch_size should be divisible by num_test_image,
# otherwise mAP will be slightly off the true value.
test_iter = int(math.ceil(float(num_test_image) / test_batch_size))
solver_param = {
# Train parameters
'base_lr': base_lr,
'weight_decay': 0.0005,
'lr_policy': "multistep",
'stepvalue': [5000, 10000, 20000],
'gamma': 0.1,
'momentum': 0.9,
'iter_size': iter_size,
'max_iter': 20000,
'snapshot': 500,
'display': 10,
'average_loss': 10,
'type': "SGD",
'solver_mode': solver_mode,
'device_id': device_id,
'debug_info': False,
'snapshot_after_train': True,
# Test parameters
'test_iter': [test_iter],
'test_interval': 100,
'eval_type': "detection",
'ap_version': "11point",
'test_initialization': False,
}
# parameters for generating detection output.
det_out_param = {
'num_classes': num_classes,
'share_location': share_location,
'background_label_id': background_label_id,
'nms_param': {'nms_threshold': 0.45, 'top_k': 400},
'save_output_param': {
'output_directory': output_result_dir,
'output_name_prefix': "comp4_det_test_",
'output_format': "VOC",
'label_map_file': label_map_file,
'name_size_file': name_size_file,
'num_test_image': num_test_image,
},
'keep_top_k': 200,
'confidence_threshold': 0.01,
'code_type': code_type,
}
# parameters for evaluating detection results.
det_eval_param = {
'num_classes': num_classes,
'background_label_id': background_label_id,
'overlap_threshold': 0.5,
'evaluate_difficult_gt': False,
'name_size_file': name_size_file,
}
### Hopefully you don't need to change the following ###
# Check file.
check_if_exist(train_data)
check_if_exist(test_data)
check_if_exist(label_map_file)
check_if_exist(pretrain_model)
make_if_not_exist(save_dir)
make_if_not_exist(job_dir)
make_if_not_exist(snapshot_dir)
# Create train net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device,
train=True, output_label=True, label_map_file=label_map_file,
transform_param=train_transform_param, batch_sampler=batch_sampler)
VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
dropout=True)
AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult)
mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,
use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations,
num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult)
# Create the MultiBoxLossLayer.
name = "mbox_loss"
mbox_layers.append(net.label)
net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param,
loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')),
propagate_down=[True, True, False, False])
with open(train_net_file, 'w') as f:
print('name: "{}_train"'.format(model_name), file=f)
print(net.to_proto(), file=f)
shutil.copy(train_net_file, job_dir)
# Create test net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size,
train=False, output_label=True, label_map_file=label_map_file,
transform_param=test_transform_param)
VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
dropout=False)
AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult)
mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,
use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations,
num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult)
conf_name = "mbox_conf"
if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX:
reshape_name = "{}_reshape".format(conf_name)
net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes]))
softmax_name = "{}_softmax".format(conf_name)
net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
flatten_name = "{}_flatten".format(conf_name)
net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
mbox_layers[1] = net[flatten_name]
elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC:
sigmoid_name = "{}_sigmoid".format(conf_name)
net[sigmoid_name] = L.Sigmoid(net[conf_name])
mbox_layers[1] = net[sigmoid_name]
net.detection_out = L.DetectionOutput(*mbox_layers,
detection_output_param=det_out_param,
include=dict(phase=caffe_pb2.Phase.Value('TEST')))
net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label,
detection_evaluate_param=det_eval_param,
include=dict(phase=caffe_pb2.Phase.Value('TEST')))
with open(test_net_file, 'w') as f:
print('name: "{}_test"'.format(model_name), file=f)
print(net.to_proto(), file=f)
shutil.copy(test_net_file, job_dir)
# Create deploy net.
# Remove the first and last layer from test net.
deploy_net = net
with open(deploy_net_file, 'w') as f:
net_param = deploy_net.to_proto()
# Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net.
del net_param.layer[0]
del net_param.layer[-1]
net_param.name = '{}_deploy'.format(model_name)
net_param.input.extend(['data'])
net_param.input_shape.extend([
caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])])
print(net_param, file=f)
shutil.copy(deploy_net_file, job_dir)
# Create solver.
solver = caffe_pb2.SolverParameter(
train_net=train_net_file,
test_net=[test_net_file],
snapshot_prefix=snapshot_prefix,
**solver_param)
with open(solver_file, 'w') as f:
print(solver, file=f)
shutil.copy(solver_file, job_dir)
max_iter = 0
# Find most recent snapshot.
for file in os.listdir(snapshot_dir):
if file.endswith(".solverstate"):
basename = os.path.splitext(file)[0]
iter = int(basename.split("{}_iter_".format(model_name))[1])
if iter > max_iter:
max_iter = iter
train_src_param = '--weights="{}" \\\n'.format(pretrain_model)
if resume_training:
if max_iter > 0:
train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter)
if remove_old_models:
# Remove any snapshots smaller than max_iter.
for file in os.listdir(snapshot_dir):
if file.endswith(".solverstate"):
basename = os.path.splitext(file)[0]
iter = int(basename.split("{}_iter_".format(model_name))[1])
if max_iter > iter:
os.remove("{}/{}".format(snapshot_dir, file))
if file.endswith(".caffemodel"):
basename = os.path.splitext(file)[0]
iter = int(basename.split("{}_iter_".format(model_name))[1])
if max_iter > iter:
os.remove("{}/{}".format(snapshot_dir, file))
# Create job file.
with open(job_file, 'w') as f:
f.write('cd {}\n'.format(caffe_root))
f.write('./build/tools/caffe train \\\n')
f.write('--solver="{}" \\\n'.format(solver_file))
f.write(train_src_param)
if solver_param['solver_mode'] == P.Solver.GPU:
f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name))
else:
f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name))
# Copy the python script to job_dir.
py_file = os.path.abspath(__file__)
shutil.copy(py_file, job_dir)
# Run the job.
os.chmod(job_file, stat.S_IRWXU)
if run_soon:
subprocess.call(job_file, shell=True)
修改完之后,在终端运行
cd /home/(服务器名字)/caffe
python examples/ssd/ssd_pascal_RMinfantry.py
这样,一次从头到尾的训练就完成了