【leetcode-排序】计算右侧小于当前元素的个数

本文介绍了一种算法,用于解决给定数组中每个元素右侧有多少个比它小的元素的问题。通过两种方法实现,一种是直接遍历,但效率较低;另一种是利用归并排序的特性,在排序过程中计算所需个数,大幅提高了算法效率。

题目:

给定一个整数数组 nums,按要求返回一个新数组 counts。数组 counts 有该性质: counts[i] 的值是  nums[i] 右侧小于 nums[i] 的元素的数量。

示例:

输入: [5,2,6,1]
输出: [2,1,1,0] 
解释:
5 的右侧有 2 个更小的元素 (2 和 1).
2 的右侧仅有 1 个更小的元素 (1).
6 的右侧有 1 个更小的元素 (1).
1 的右侧有 0 个更小的元素.

解法1:(超时了)

public List<Integer> countSmaller(int[] nums) {

        List<Integer> counts = new ArrayList<>();

        for(int i=0;i<nums.length;i++) {
            counts.add(calc(i, nums));
        }

        return counts;
    }

    private Integer calc(int i, int[] nums) {
        int count =0;
        for(int j=i+1;j<nums.length;j++) {
            if(nums[j]<nums[i]) {
                count++;
            }
        }

        return count;
    }

解法2:

归并排序时计算个数

class Solution {
    private int[] temp;
    private int[] counter;
    private int[] indexes;

    public List<Integer> countSmaller(int[] nums) {
        List<Integer> res = new ArrayList<>();
        int len = nums.length;
        if (len == 0) {
            return res;
        }
        temp = new int[len];
        counter = new int[len];
        indexes = new int[len];
        for (int i = 0; i < len; i++) {
            indexes[i] = i;
        }
        mergeAndCountSmaller(nums, 0, len - 1);
        for (int i = 0; i < len; i++) {
            res.add(counter[i]);
        }
        return res;
    }

    /**
     * 针对数组 nums 指定的区间 [l, r] 进行归并排序,在排序的过程中完成统计任务
     *
     * @param nums
     * @param l
     * @param r
     */
    private void mergeAndCountSmaller(int[] nums, int l, int r) {
        if (l == r) {
            // 数组只有一个元素的时候,没有比较,不统计
            return;
        }
        int mid = l + (r - l) / 2;
        mergeAndCountSmaller(nums, l, mid);
        mergeAndCountSmaller(nums, mid + 1, r);
        // 归并排序的优化,同样适用于该问题
        // 如果索引数组有序,就没有必要再继续计算了
        if (nums[indexes[mid]] > nums[indexes[mid + 1]]) {
            mergeOfTwoSortedArrAndCountSmaller(nums, l, mid, r);
        }
    }

    /**
     * [l, mid] 是排好序的
     * [mid + 1, r] 是排好序的
     *
     * @param nums
     * @param l
     * @param mid
     * @param r
     */
    private void mergeOfTwoSortedArrAndCountSmaller(int[] nums, int l, int mid, int r) {
        // 3,4  1,2
        for (int i = l; i <= r; i++) {
            temp[i] = indexes[i];
        }
        int i = l;
        int j = mid + 1;
        // 左边出列的时候,计数
        for (int k = l; k <= r; k++) {
            if (i > mid) {
                indexes[k] = temp[j];
                j++;
            } else if (j > r) {
                indexes[k] = temp[i];
                i++;
                // 此时 j 用完了,[7,8,9 | 1,2,3]
                // 之前的数就和后面的区间长度构成逆序
                counter[indexes[k]] += (r - mid);
            } else if (nums[temp[i]] <= nums[temp[j]]) {
                indexes[k] = temp[i];
                i++;
                // 此时 [4,5, 6   | 1,2,3 10 12 13]
                //           mid          j
                counter[indexes[k]] += (j - mid - 1);
            } else {
                // nums[indexes[i]] > nums[indexes[j]] 构成逆序
                indexes[k] = temp[j];
                j++;
            }
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值