CodeForces 228D. Zigzag(线段树暴力)

本文介绍了一种名为Zigzag的数学序列及其相关函数,并提供了一种算法实现方案,用于处理基于该序列的特定操作,包括数组元素赋值及查询Zigzag函数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Zigzag
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The court wizard Zigzag wants to become a famous mathematician. For that, he needs his own theorem, like the Cauchy theorem, or his sum, like the Minkowski sum. But most of all he wants to have his sequence, like the Fibonacci sequence, and his function, like the Euler's totient function.

The Zigag's sequence with the zigzag factor z is an infinite sequence Siz (i ≥ 1; z ≥ 2), that is determined as follows:

  • Siz = 2, when ;
  • , when ;
  • , when .

Operation  means taking the remainder from dividing number x by number y. For example, the beginning of sequence Si3(zigzag factor 3) looks as follows: 1, 2, 3, 2, 1, 2, 3, 2, 1.

Let's assume that we are given an array a, consisting of n integers. Let's define element number i (1 ≤ i ≤ n) of the array as ai. The Zigzag function is function , where l, r, z satisfy the inequalities 1 ≤ l ≤ r ≤ nz ≥ 2.

To become better acquainted with the Zigzag sequence and the Zigzag function, the wizard offers you to implement the following operations on the given array a.

  1. The assignment operation. The operation parameters are (p, v). The operation denotes assigning value v to the p-th array element. After the operation is applied, the value of the array element ap equals v.
  2. The Zigzag operation. The operation parameters are (l, r, z). The operation denotes calculating the Zigzag function Z(l, r, z).

Explore the magical powers of zigzags, implement the described operations.

Input

The first line contains integer n (1 ≤ n ≤ 105) — The number of elements in array a. The second line contains n space-separated integers: a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

The third line contains integer m (1 ≤ m ≤ 105) — the number of operations. Next m lines contain the operations' descriptions. An operation's description starts with integer ti (1 ≤ ti ≤ 2) — the operation type.

  • If ti = 1 (assignment operation), then on the line follow two space-separated integers: pi, vi (1 ≤ pi ≤ n; 1 ≤ vi ≤ 109) — the parameters of the assigning operation.
  • If ti = 2 (Zigzag operation), then on the line follow three space-separated integers: li, ri, zi (1 ≤ li ≤ ri ≤ n; 2 ≤ zi ≤ 6) — the parameters of the Zigzag operation.

You should execute the operations in the order, in which they are given in the input.

Output

For each Zigzag operation print the calculated value of the Zigzag function on a single line. Print the values for Zigzag functions in the order, in which they are given in the input.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cincout streams or the %I64dspecifier.

Sample test(s)
input
5
2 3 1 5 5
4
2 2 3 2
2 1 5 3
1 3 5
2 1 5 3
output
5
26
38
Note

Explanation of the sample test:

  • Result of the first operation is Z(2, 3, 2) = 3·1 + 1·2 = 5.
  • Result of the second operation is Z(1, 5, 3) = 2·1 + 3·2 + 1·3 + 5·2 + 5·1 = 26.
  • After the third operation array a is equal to 2, 3, 5, 5, 5.
  • Result of the forth operation is Z(1, 5, 3) = 2·1 + 3·2 + 5·3 + 5·2 + 5·1 = 38.


大致思路:Z从2到6,按循环节分别维护一棵线段树,一共维护30棵线段树,查询复杂度logn的,修改的复杂度是30*logn

时限3s,毕竟codeforces可过


//137924k	1372ms	GNU G++ 4.9.2 2761B
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;

#define root 1,n,1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int N = 1e5+100;
ll sum[35][N<<2];
ll val[N],mul[35][N];
int n;

inline void pushup(int rt,ll *sum)
{
    sum[rt] = sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt,ll sum[],ll mul[])
{
    if(l == r)
    {
        sum[rt] = val[l]*mul[l];
        return ;
    }
    int m = (l+r)>>1;
    build(lson,sum,mul);
    build(rson,sum,mul);
    pushup(rt,sum);
}
void update(int pos,ll x,int l,int r,int rt,ll sum[],ll mul[])
{
    if(l == r)
    {
        sum[rt] = x*mul[l];
        return ;
    }
    int m = (l+r)>>1;
    if(pos <= m) update(pos,x,lson,sum,mul);
    else update(pos,x,rson,sum,mul);
    pushup(rt,sum);
}
ll query(int L,int R,int l,int r,int rt,ll sum[])
{
    if(L <= l && r <= R)
    {
        return sum[rt];
    }
    ll ans = 0;
    int m = (l+r)>>1;
    if(L <= m) ans += query(L,R,lson,sum);
    if(R > m) ans += query(L,R,rson,sum);
    return ans;
}

inline int getid(int l,int z)
{
    int buf = 0;
    REP(i,z-2) buf += 2*i;
    int k = 2*(z-1);
    l = (l-1)%k+1;
    if(l == 1) return l+buf;
    return k-l+2+buf;
}

int main()
{
//......................
    ll a[15];
    a[1] = 1,a[2] = 2;
    REP(i,2)REP(j,N-10) mul[i][j] = a[(j-1+i-1)%2+1];
    a[3] = 3,a[4] = 2;
    REP(i,4)REP(j,N-10) mul[2+i][j] = a[(j-1+i-1)%4+1];
    a[4] = 4,a[5] = 3,a[6] = 2;
    REP(i,6)REP(j,N-10) mul[6+i][j] = a[(j-1+i-1)%6+1];
    a[5] = 5,a[6] = 4,a[7] = 3,a[8] = 2;
    REP(i,8)REP(j,N-10) mul[12+i][j] = a[(j-1+i-1)%8+1];
    a[6] = 6,a[7] = 5,a[8] = 4,a[9] = 3,a[10] = 2;
    REP(i,10)REP(j,N-10) mul[20+i][j] = a[(j-1+i-1)%10+1];
//.......................

    cin>>n;
    REP(i,n) scanf("%I64d",&val[i]);
    REP(i,30) build(root,sum[i],mul[i]);
    int Q;
    cin>>Q;
    REP(i,Q)
    {
        int op;
        scanf("%d",&op);
        if(op == 1)
        {
            int pos;ll x;
            scanf("%d%I64d",&pos,&x);
            REP(i,30) update(pos,x,root,sum[i],mul[i]);
        }
        else
        {
            int l,r,z;
            scanf("%d%d%d",&l,&r,&z);
            int id = getid(l,z);
            printf("%I64d\n",query(l,r,root,sum[id]));
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值