分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
K-SVD
Rachel Zhang
1. k-SVD introduction
1. K-SVD usage:
Design/Learn a dictionary adaptively to betterfit the model and achieve sparse signal representations.
2. Main Problem:
Y = DX
Where Y∈R(n*N), D∈R(n*K), X∈R(k*N), X is a sparse matrix.
N is # of samples;
n is measurement dimension;
K is the length of a coefficient.
2. Derivation from K-Means
3. K-Means:
1) The sparse representationproblem can be viewed as generalization of the VQ objective. K-SVD can be viewed as generalization of K-Means.
2) K-Means algorithm for vectorquantization:
Dictionary of VQ codewords is typically trained using K-Means algorithm.
When Dictionary D is given, each signal is represented as its closestcodeword (under l2-norm distance). I.e.
Yi = Dxi</

本文介绍了K-SVD算法,它是K-Means的推广,用于适应性设计和学习字典以获得更好的稀疏信号表示。K-SVD通过迭代求解过程更新字典和系数,确保误差单调下降。在实际应用中,字典大小和稀疏度的选择对结果有显著影响。
最低0.47元/天 解锁文章
869

被折叠的 条评论
为什么被折叠?



