决策树练习 泰坦尼克号生存数据 决策树
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer #特征转换器
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn import tree
#1.数据获取
titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
#print titanic.head()
#print titanic.info()
X = titanic[['pclass','age','sex']] #提取要分类的特征。一般可以通过最大熵原理进行特征选择
y = titanic['survived']
print (X.shape) #(1313, 3)
#print X.head()
#print X['age']
#2.数据预处理:训练集测试集分割,数据标准化
X['age'].fillna(X['age'].mean(),inplace=True) #age只有633个,需补充,使用平均数或者中位数都是对模型偏离造成最小的策略
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=33) # 将数据进行分割
vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='record')) #对训练数据的特征进行提取
X_test = vec.transform(X_test.to_dict(orient='record')) #对测试数据的特征进行提取
#转换特征后,凡是类别型型的特征都单独独成剥离出来,独成一列特征,数值型的则不变
print (vec.feature_names_) #['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
#3.使用决策树对测试数据进行类别预测
dtc = DecisionTreeClassifier()
dtc.fit(X_train,y_train)
y_predict = dtc.predict(X_test)
#4.获取结果报告
print ('Accracy:',dtc.score(X_test,y_test))
print (classification_report(y_predict,y_test,target_names=['died','servived']))
#5.将生成的决策树保存为dot_data文件,用于可视化
with open("jueceshu.dot", 'w') as f:
f = tree.export_graphviz(dtc, out_file = f)
#三种可视化方式