LINTCODE——最大子数组III

本文介绍了一种使用动态规划解决LINTCODE最大子数组III问题的方法。通过定义两个辅助数组mustTheLast和notTheLast来分别记录第j段是否必须包含第i个元素的情况下的最大值,给出了具体的动态规划方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LINTCODE——最大子数组III

思路:动态规划的方法,记mustTheLast[i][j]为在前i个数中分成j段,且第j段必须有第i个数的最大值,notTheLast[i][j]为前i个中分成j段,且第j段不一定含有第i个数的最大值;注意初始化的数据,不能全部初始化为0,不然在全部为负整数以及一些其他情况的数组会出错;
动态规划方程为:
mustTheLast[i][j] = max(mustTheLast[i-1][j] + nums[i-1] ,notTheLast[i-1][j-1] + nums[i-1]);
notTheLast[i][j] = max(notTheLast[i-1][j] ,mustTheLast[i][j]);

class Solution {
public:
    /*
     * @param nums: A list of integers
     * @param k: An integer denote to find k non-overlapping subarrays
     * @return: An integer denote the sum of max k non-overlapping subarrays
     */
    int maxSubArray(vector<int> &nums, int k) {
        // write your code here
        int n = nums.size();
        if(k > n)
            return INT_MIN;
        vector<vector<int> > notTheLast(n+1,vector<int>(k+1,-10000));
        vector<vector<int> > mustTheLast(n+1,vector<int>(k+1,-10000));
        mustTheLast[0][0] = 0;  
        notTheLast[0][0] = 0 ; 
        for(int i = 1 ; i <= n; i++)
        {
            mustTheLast[i][0] = 0 ; 
            notTheLast[i][0] = 0;  

            for(int j = 1 ; j <= k; j++)
            {
                mustTheLast[i][j] = max(mustTheLast[i-1][j] + nums[i-1] ,notTheLast[i-1][j-1] + nums[i-1]);

                notTheLast[i][j] = max(notTheLast[i-1][j] ,mustTheLast[i][j]);

            }

        }
        return notTheLast[n][k];

    }
};
### 最大子数组和算法的实现 最大子数组和问题的目标是找到一个数组中和最大的连续子数组。该问题在算法领域中具有重要意义,尤其在动态规划和分治算法的应用中被广泛研究。 #### 方法1:蛮力法 蛮力法是最直观的解决方案,其基本思想是遍历所有可能的子数组,计算它们的和,并从中找出最大值。这种方法的时间复杂度为 $O(n^2)$,对于较小的数组规模是可行的,但对于较大的数组则效率较低。 以下是C语言实现: ```c #include <stdio.h> int maxSubArray1(int a[], int n) { int maxSum = 0; int i, j; for (i = 0; i < n; i++) { int currentSum = 0; for (j = i; j < n; j++) { currentSum += a[j]; if (currentSum > maxSum) { maxSum = currentSum; } } } return maxSum; } int main() { int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4}; int n = sizeof(arr) / sizeof(arr[0]); printf("最大子数组的和为: %d\n", maxSubArray1(arr, n)); return 0; } ``` #### 方法2:动态规划法 动态规划法是解决最大子数组和问题的经典方法,其时间复杂度为 $O(n)$,效率显著优于蛮力法。其核心思想是维护一个当前子数组的和,如果当前子数组的和小于0,则丢弃之前的子数组并重新开始计算。 以下是C语言实现: ```c #include <stdio.h> int maxSubArray2(int a[], int n) { int maxSum = a[0]; int currentSum = a[0]; for (int i = 1; i < n; i++) { currentSum = (currentSum + a[i] > a[i]) ? currentSum + a[i] : a[i]; maxSum = (currentSum > maxSum) ? currentSum : maxSum; } return maxSum; } int main() { int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4}; int n = sizeof(arr) / sizeof(arr[0]); printf("最大子数组的和为: %d\n", maxSubArray2(arr, n)); return 0; } ``` #### 方法3:分治法 分治法将数组分为左右两部分,分别求解左半部分和右半部分的最大子数组和,同时考虑跨越中间的最大子数组和。这种方法的时间复杂度为 $O(n \log n)$,适合大规模数据的处理。 以下是C语言实现: ```c #include <stdio.h> // 求三者中的最大值 int max(int a, int b, int c) { return (a > b) ? ((a > c) ? a : c) : ((b > c) ? b : c); } // 求跨越中间的最大子数组和 int maxCrossingSum(int a[], int left, int mid, int right) { int sum = 0; int leftSum = -999999; for (int i = mid; i >= left; i--) { sum += a[i]; if (sum > leftSum) { leftSum = sum; } } sum = 0; int rightSum = -999999; for (int i = mid + 1; i <= right; i++) { sum += a[i]; if (sum > rightSum) { rightSum = sum; } } return leftSum + rightSum; } // 分治法主函数 int maxSubArray3(int a[], int left, int right) { if (left == right) { return a[left]; } int mid = (left + right) / 2; int leftMax = maxSubArray3(a, left, mid); int rightMax = maxSubArray3(a, mid + 1, right); int crossMax = maxCrossingSum(a, left, mid, right); return max(leftMax, rightMax, crossMax); } int main() { int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4}; int n = sizeof(arr) / sizeof(arr[0]); printf("最大子数组的和为: %d\n", maxSubArray3(arr, 0, n - 1)); return 0; } ``` ### 总结 - **蛮力法**:简单直观,但效率较低,时间复杂度为 $O(n^2)$。 - **动态规划法**:高效且简洁,时间复杂度为 $O(n)$。 - **分治法**:适用于大规模数据,时间复杂度为 $O(n \log n)$,但实现较复杂。 根据具体需求和数据规模,可以选择合适的算法实现最大子数组和的求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值