Java 数组
1.数组创建
datatype[] arryName = new dataType[size]
int[] numbers = new int[10];//创建一个大小为10 的int数组
1.2.数组内存分析
1.3.三种初始化方式
1.数组是引用类型,元素相当于类的实例变量,一经分配,每个元素也按实例变量同样的方式被隐式初始化
//静态初始化数组
int[] num1 = {1,2,3,4};
Man[] mans = {new Man(1,1),new Man(2,2)}//引用
//动态初始化;包含默认值(int为0,String为null)
int[] num2 = new int[10];
for (int i = 0; i <num2.length ; i++) {
num2[i] = i;
}
1.4数组特点
1.**长度确定,**大小不可变
2.元素是相同类型,不能混类型,可看成任意类型的有序集合
3.元素类型可以是任何数据类型,包括基本类型和引用类型
4.**数组变量属于引用类型,**数组可看成对象,每个元素相当于该对象的成员变量
5.数组本身就是对象,java中对象在堆中,因此,无论保存原始类型还是其他对象类型,数组对象本身在堆中。
2.数组使用
int[] num1 = {1,2,3,4};
//。for/for-each循环,num1.for(增强型for循环)
for (int i : num1) {
System.out.println(i);
}
//当作参数传递
printArry(num2);
}
public static void printArry(int[] arry){
for (int i : arry) {
System.out.println(i);
}
}
//数组作返回值
public static int[] reverse(int[] arry){
int[] arry1 = new int[arry.length];
for (int i = 0,j = arry.length-1; i < arry1.length; i++,j--) {
arry1[i] = arry[j];
}
return arry1;
}
3.多维数组
//二维数组
int[][] arry= {{1,2},{2,3},{3,4},{4,5}};
for (int i = 0; i <arry.length ; i++) {
for (int j = 0; j <arry[i].length ; j++) {
System.out.print(arry[i][j]);
}
System.out.println();
}
int[][] num = new int[4][2];
for (int i = 0; i <num.length ; i++) {
for (int j = 0; j < num[i].length; j++) {
num[i][j] = i+j;
}
}
for (int i = 0; i <num.length ; i++) {
for (int j = 0; j <num[i].length ; j++) {
System.out.print(num[i][j]);
}
System.out.println();
}
4.Arrys类
里面有很多关于数组常用的静态方法,直接调用即可
查看JDK帮助文档:E:\Setup_Java\jdk api 1.8_China
//常用方法
//给数组赋值:fill()
//对数组排序升序:sort()
//比较数组元素值是否相等:equals()
//查找数组元素:binarySearch()堆排序好的数组二分查找
public static void main(String[] args) {
int[] a = {1,4,5,7,90,55,33,100};
Arrays.sort(a);
System.out.println(Arrays.toString(a));//[1, 4, 5, 7, 33, 55, 90, 100]
printArry(a);//1 4 5 7 33 55 90 100 a[]数组本身变了
Arrays.fill(a,0);//用0填充数组
System.out.println(Arrays.toString(a));//[0, 0, 0, 0, 0, 0, 0, 0]
printArry(a);//0 0 0 0 0 0 0 0 a[]数组本身变了
int[] b = {1,4,5,7,90,55,33,100};
System.out.println(Arrays.equals(a,b));//判断a,b数组元素是否相等 false
System.out.println(Arrays.binarySearch(b,90));//-8未排序
Arrays.sort(b);//排序[1, 4, 5, 7, 33, 55, 90, 100]
System.out.println(Arrays.binarySearch(b,90));//6
}
public static void printArry(int[] a){
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
System.out.println();
}
4.1冒泡排序
public static int[] sort(int[] arry){
//外层循环,控制比较趟数,每循环一次确定一个位置,故共需要leng-1次即可
//内层循环,两两比较,每次循环比较次数length-1-i。
//优化一下{1,2,3,4,5}这种情况
int temp = 0;
boolean flag = false;//标志
for (int i = 0; i <arry.length-1 ; i++) {
for (int j = 0; j <arry.length-1-i ; j++) {
if (arry[j+1]<arry[j]){
temp= arry[j+1];
arry[j+1] = arry[j];
arry[j] = temp;
flag = true;
}
}
if (flag==false) break;
}
return arry;
}
5.稀疏数组
public class Xishu {
public static void main(String[] args) {
// 创建棋盘
int[][] checkerBoard = new int[11][11];
checkerBoard[1][3] = 1;
checkerBoard[2][4] = 2;
System.out.println("= = = = = = =初始的棋盘= = = = = = = = = =");
for (int i = 0; i < 11; i++) {
for (int j = 0; j < 11; j++) {
System.out.print(checkerBoard[i][j] + "\t");
}
System.out.println();
}
System.out.println("= = = = = = = = = = = = = = = = = = = = = =");
System.out.println("= = = = = = = = 稀疏数组= = = = = = = = =");
//有效数字+1行,3列
//第一行:棋盘行 棋盘列 有效数字个数
//第二行:所在行 所在列 第一个有效数字值
//以此类推
int sum = count(checkerBoard);
int[][] sparseArray = new int[sum+1][3];//稀疏数组
sparseArray[0][0] = 11;
sparseArray[0][1] = 11;
sparseArray[0][2] = sum;
//创建稀疏数组
int cot = 0;
for (int i = 0; i <checkerBoard.length ; i++) {
for (int j = 0; j <checkerBoard[i].length ; j++) {
if (checkerBoard[i][j]!=0){
cot++;
sparseArray[cot][0] = i;
sparseArray[cot][1] = j;
sparseArray[cot][2] = checkerBoard[i][j];
}
}
}
//输出稀疏数组
for (int i = 0; i <sparseArray.length ; i++) {
for (int j = 0; j <sparseArray[i].length ; j++) {
System.out.print(sparseArray[i][j]+"\t");
}
System.out.println();
}
System.out.println("= = = = = = = = = = = = = = = = = = = = = =");
System.out.println("= = = = = = = 还原稀疏数组= = = = == = =");
int[][] recheckerBoard = new int[sparseArray[0][0]][sparseArray[0][1]];
for (int i = 1; i < sparseArray.length; i++) {
recheckerBoard[sparseArray[i][0]][sparseArray[i][1]] = sparseArray[i][2];
}
for (int i = 0; i < recheckerBoard.length; i++) {
for (int j = 0; j < recheckerBoard[i].length; j++) {
System.out.print(recheckerBoard[i][j] + "\t");
}
System.out.println();
}
System.out.println("= = = = = = = = = = = = = = = = = = = = = =");
}
public static int count(int[][] arry){
/**
* 计算初始棋盘有效数字
*/
int sum = 0;
for (int i = 0; i <arry.length ; i++) {
for (int j = 0; j <arry.length ; j++) {
if (arry[i][j] != 0){
sum++;
}
}
}
return sum;
}
}