tf.variable_scope() and tf.name_scope()

本文探讨了TensorFlow中tf.variable_scope与tf.name_scope的区别,通过实例演示如何使用这两个作用域来管理变量命名,以及它们在tf.get_variable与tf.Variable之间的适用性差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://blog.youkuaiyun.com/UESTC_C2_403/article/details/72328815

tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量

tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量

例如:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.variable_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print a1.name
    print a2.name
    print a3.name
    print a4.name
输出:
V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0


例子2:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print a1.name
    print a2.name
    print a3.name
    print a4.name
报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:


换成下面的代码就可以执行:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
    # a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
    # a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    # print a1.name
    print a2.name
    # print a3.name
    print a4.name
输出:
V1/a2:0
V2/a2:0
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值