HiveContext在基本的SQLContext上有了一些新的特性,可以用Hive QL写查询,可以读取Hive表中的数据,支持Hive的UDF。
要把hive/conf/hive-site.xml文件拷贝到spark/conf下。
cd /app/hive/conf
scp hive-site.xml root@node1:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp hive-site.xml root@node2:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp hive-site.xml root@node3:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp hive-site.xml root@node4:/app/spark/spark-2.2.0-bin-2.9.0/conf/
准备hive的emp表数据
cd /app/hive/testData
vi emploaddata.txt
1 sid 12 cq
2 zhangsan 13 bj
3 lisi 14 sh
启动zookeeper
启动hadoop
启动hive
hive创建表emp
cd /app/hive/bin
hive
CREATE TABLE IF NOT EXISTS emp (
id int,
name String,
salary String,
destination String)
COMMENT 'Employee details'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;
给emp表添加数据
LOAD DATA LOCAL inpath '/app/hive/testData/emploaddata.txt' OVERWRITE INTO TABLE emp;
项目目录
pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sid.com</groupId>
<artifactId>sparksqltrain</artifactId>
<version>1.0-SNAPSHOT</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.2.0</spark.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<!-- scala依赖 -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- spark依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- hivecontext要用这个依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<configuration>
<downloadSources>true</downloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
</additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
</classpathContainers>
</configuration>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>
HiveContext.scala
package com.sid.com
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.hive.HiveContext
object HiveContext {
def main(args: Array[String]): Unit = {
//创建相应的Context
val sparkConf = new SparkConf()
sparkConf//.setAppName("SQLContext").setMaster("local[3]")
val sc = new SparkContext(sparkConf)
//这个过时了,在spark1.X中这样用,2.X已经不用这个了
val hiveContext = new HiveContext(sc);
hiveContext.table("emp").show()
sc.stop()
}
}
打包
传到服务器上运行
cd /app/spark/spark-2.2.0-bin-2.9.0/bin
./spark-submit --class com.sid.com.HiveContext --master local[2] --name HiveContext --jars /app/mysql-connector-java-5.1.46.jar /app/spark/test_data/sparksqltrain-1.0-SNAPSHOT.jar
报错
Exception in thread "main" java.lang.IllegalArgumentException: java.net.UnknownHostException: hadoopcluster
at org.apache.hadoop.security.SecurityUtil.buildTokenService(SecurityUtil.java:374)
at org.apache.hadoop.hdfs.NameNodeProxies.createNonHAProxy(NameNodeProxies.java:310)
at org.apache.hadoop.hdfs.NameNodeProxies.createProxy(NameNodeProxies.java:176)
at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:668)
at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:604)
at org.apache.hadoop.hdfs.DistributedFileSystem.initialize(DistributedFileSystem.java:148)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2598)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:91)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2632)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2614)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:370)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:256)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:194)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:314)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2153)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2366)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:245)
at org.apache.spark.sql.Dataset.show(Dataset.scala:644)
at org.apache.spark.sql.Dataset.show(Dataset.scala:603)
at org.apache.spark.sql.Dataset.show(Dataset.scala:612)
at com.sid.com.HiveContext$.main(HiveContext.scala:15)
at com.sid.com.HiveContext.main(HiveContext.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.net.UnknownHostException: hadoopcluster
... 65 more
因为我的hadoop的HDFS配置了HA高可用,hadoopcluster是hadoop配置文件hdfs-site.xml中dfs.nameservices的值。
需要把hadoop的配置文件hdfs-site.xml core-site.xml也拷贝到每个spark的conf下
cd /app/hadoop/hadoop-2.9.0/etc/hadoop
scp hdfs-site.xml root@node1:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp hdfs-site.xml root@node2:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp hdfs-site.xml root@node3:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp hdfs-site.xml root@node4:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp core-site.xml root@node1:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp core-site.xml root@node2:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp core-site.xml root@node3:/app/spark/spark-2.2.0-bin-2.9.0/conf/
scp core-site.xml root@node4:/app/spark/spark-2.2.0-bin-2.9.0/conf/
cd /app/spark/spark-2.2.0-bin-2.9.0/conf
cp spark-defaults.conf.template spark-defaults.conf
vi spark-defaults.conf
追加一下内容
spark.files file:///app/spark/spark-2.2.0-bin-2.9.0/conf/hdfs-site.xml,file:///app/spark/spark-2.2.0-bin-2.9.0/conf/core-site.xml
重新执行spark作业