线性代数
Numpy 定义了 matrix
类型,使用该 matrix
类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarray
和 matrix
对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在程序中使用 matrix
。
矩阵和向量积
矩阵的定义、矩阵的加法、矩阵的数乘、矩阵的转置与二维数组完全一致,不再进行说明,但矩阵的乘法有不同的表示。
numpy.dot(a, b[, out])
计算两个矩阵的乘积,如果是一维数组则是它们的内积。import numpy as np x = np.array([1, 2, 3, 4, 5]) y = np.array([2, 3, 4, 5, 6]) z = np.dot(x, y) print(z) # 70 x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]]) print(x) # [[1 2 3] # [3 4 5] # [6 7 8]] y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]]) print(y) # [[5 4 2] # [1 7 9] # [0 4 5]] z = np.dot(x, y) print(z) # [[ 7 30 35] # [ 19 60 67] # [ 37 105 115]] z = np.dot(y, x) print(z) # [[ 29 40 51] # [ 76 93 110] # [ 42 51 60]]
矩阵特征值与特征向量
numpy.linalg.eig(a)
计算方阵的特征值和特征向量。numpy.linalg.eigvals(a)
计算方阵的特征值。import numpy as np # 创建一个对角矩阵! x = np.diag((1, 2, 3)) print(x) # [[1 0 0] # [0 2 0] # [0 0 3]] print(np.linalg.eigvals(x)) # [1. 2. 3.] a, b = np.linalg.eig(x) # 特征值保存在a中,特征向量保存在b中 print(a) # [1. 2. 3.] print(b) # [[1. 0. 0.] # [0. 1. 0.] # [0. 0. 1.]] # 检验特征值与特征向量是否正确 for i in range(3): if np.allclose(a[i] * b[:, i], np.dot(x, b[:, i])): print('Right') else: print('Error') # Right # Right # Right
判断对称阵是否为正定阵(特征值是否全部为正)。
mport numpy as np A = np.arange(16).reshape(4, 4) print(A) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11] # [12 13 14 15]] A = A + A.T # 将方阵转换成对称阵 print(A) # [[ 0 5 10 15] # [ 5 10 15 20] # [10 15 20 25] # [15 20 25 30]] B = np.linalg.eigvals(A) # 求A的特征值 print(B) # [ 6.74165739e+01 -7.41657387e+00 1.82694656e-15 -1.72637110e-15] # 判断是不是所有的特征值都大于0,用到了all函数,显然对称阵A不是正定的 if np.all(B > 0): print('Yes') else: print('No') # No
矩阵分解
奇异值分解
有关奇异值分解的原理:奇异值分解(SVD)及其应用
u, s, v = numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)
奇异值分解a
是一个形如(M,N)矩阵full_matrices
的取值是为False或者True,默认值为True,这时u
的大小为(M,M),v
的大小为(N,N)。否则u
的大小为(M,K),v
的大小为(K,N) ,K=min(M,N)。compute_uv
的取值是为False或者True,默认值为True,表示计算u,s,v
。为False的时候只计算s
。- 总共有三个返回值
u,s,v
,u
大小为(M,M),s
大小为(M,N),v
大小为(N,N),a = u*s*v
。 - 其中
s
是对矩阵a
的奇异值分解。s
除了对角元素不为0
,其他元素都为0
,并且对角元素从大到小排列。s
中有n
个奇异值,一般排在后面的比较接近0,所以仅保留比较大的r
个奇异值。
-
注:Numpy中返回的
v
是通常所谓奇异值分解a=u*s*v'
中v
的转置。import numpy as np A = np.array([[4, 11, 14], [8, 7, -2]]) print(A) # [[ 4 11 14] # [ 8 7 -2]] u, s, vh = np.linalg.svd(A, full_matrices=False) print(u.shape) # (2, 2) print(u) # [[-0.9486833 -0.31622777] # [-0.31622777 0.9486833 ]] print(s.shape) # (2,) print(np.diag(s)) # [[18.97366596 0. ] # [ 0. 9.48683298]] print(vh.shape) # (2, 3) print(vh) # [[-0.33333333 -0.66666667 -0.66666667] # [ 0.66666667 0.33333333 -0.66666667]] a = np.dot(u, np.diag(s)) a = np.dot(a, vh) print(a) # [[ 4. 11. 14.] # [ 8. 7. -2.]]
import numpy as np A = np.array([[1, 1], [1, -2], [2, 1]]) print(A) # [[ 1 1] # [ 1 -2] # [ 2 1]] u, s, vh = np.linalg.svd(A, full_matrices=False) print(u.shape) # (3, 2) print(u) # [[-5.34522484e-01 -1.11022302e-16] # [ 2.67261242e-01 -9.48683298e-01] # [-8.01783726e-01 -3.16227766e-01]] print(s.shape) # (2,) print(np.diag(s)) # [[2.64575131 0. ] # [0. 2.23606798]] print(vh.shape) # (2, 2) print(vh) # [[-0.70710678 -0.70710678] # [-0.70710678 0.70710678]] a = np.dot(u, np.diag(s)) a = np.dot(a, vh) print(a) # [[ 1. 1.] # [ 1. -2.] # [ 2. 1.]]
QR分解
q,r = numpy.linalg.qr(a, mode='reduced')
计算矩阵a
的QR分解。a
是一个(M, N)的待分解矩阵。mode = reduced
:返回(M, N)的列向量两两正交的矩阵q
,和(N, N)的三角阵r
(Reduced QR分解)。mode = complete
:返回(M, M)的正交矩阵q
,和(M, N)的三角阵r
(Full QR分解)。import numpy as np A = np.array([[2, -2, 3], [1, 1, 1], [1, 3, -1]]) print(A) # [[ 2 -2 3] # [ 1 1 1] # [ 1 3 -1]] q, r = np.linalg.qr(A) print(q.shape) # (3, 3) print(q) # [[-0.81649658 0.53452248 0.21821789] # [-0.40824829 -0.26726124 -0.87287156] # [-0.40824829 -0.80178373 0.43643578]] print(r.shape) # (3, 3) print(r) # [[-2.44948974 0. -2.44948974] # [ 0. -3.74165739 2.13808994] # [ 0. 0. -0.65465367]] print(np.dot(q, r)) # [[ 2. -2. 3.] # [ 1. 1. 1.] # [ 1. 3. -1.]] a = np.allclose(np.dot(q.T, q), np.eye(3)) print(a) # True
import numpy as np A = np.array([[1, 1], [1, -2], [2, 1]]) print(A) # [[ 1 1] # [ 1 -2] # [ 2 1]] q, r = np.linalg.qr(A, mode='complete') print(q.shape) # (3, 3) print(q) # [[-0.40824829 0.34503278 -0.84515425] # [-0.40824829 -0.89708523 -0.16903085] # [-0.81649658 0.27602622 0.50709255]] print(r.shape) # (3, 2) print(r) # [[-2.44948974 -0.40824829] # [ 0. 2.41522946] # [ 0. 0. ]] print(np.dot(q, r)) # [[ 1. 1.] # [ 1. -2.] # [ 2. 1.]] a = np.allclose(np.dot(q, q.T), np.eye(3)) print(a) # True
import numpy as np A = np.array([[1, 1], [1, -2], [2, 1]]) print(A) # [[ 1 1] # [ 1 -2] # [ 2 1]] q, r = np.linalg.qr(A) print(q.shape) # (3, 2) print(q) # [[-0.40824829 0.34503278] # [-0.40824829 -0.89708523] # [-0.81649658 0.27602622]] print(r.shape) # (2, 2) print(r) # [[-2.44948974 -0.40824829] # [ 0. 2.41522946]] print(np.dot(q, r)) # [[ 1. 1.] # [ 1. -2.] # [ 2. 1.]] a = np.allclose(np.dot(q.T, q), np.eye(2)) print(a) # True (说明q为正交矩阵)
Cholesky分解
L = numpy.linalg.cholesky(a)
返回正定矩阵a
的 Cholesky 分解a = L*L.T
,其中L
是下三角。import numpy as np A = np.array([[1, 1, 1, 1], [1, 3, 3, 3], [1, 3, 5, 5], [1, 3, 5, 7]]) print(A) # [[1 1 1 1] # [1 3 3 3] # [1 3 5 5] # [1 3 5 7]] print(np.linalg.eigvals(A)) # [13.13707118 1.6199144 0.51978306 0.72323135] L = np.linalg.cholesky(A) print(L) # [[1. 0. 0. 0. ] # [1. 1.41421356 0. 0. ] # [1. 1.41421356 1.41421356 0. ] # [1. 1.41421356 1.41421356 1.41421356]] print(np.dot(L, L.T)) # [[1. 1. 1. 1.] # [1. 3. 3. 3.] # [1. 3. 5. 5.] # [1. 3. 5. 7.]]
范数和其它数字
矩阵的范数
numpy.linalg.norm(x, ord=None, axis=None, keepdims=False)
计算向量或者矩阵的范数。-
根据
ord
参数的不同,计算不同的范数:import numpy as np x = np.array([1, 2, 3, 4]) print(np.linalg.norm(x, ord=1)) # 10.0 print(np.sum(np.abs(x))) # 10 print(np.linalg.norm(x, ord=2)) # 5.477225575051661 print(np.sum(np.abs(x) ** 2) ** 0.5) # 5.477225575051661 print(np.linalg.norm(x, ord=-np.inf)) # 1.0 print(np.min(np.abs(x))) # 1 print(np.linalg.norm(x, ord=np.inf)) # 4.0 print(np.max(np.abs(x)))
import numpy as np A = np.array([[1, 2, 3, 4], [2, 3, 5, 8], [1, 3, 5, 7], [3, 4, 7, 11]]) print(A) # [[ 1 2 3 4] # [ 2 3 5 8] # [ 1 3 5 7] # [ 3 4 7 11]] print(np.linalg.norm(A, ord=1)) # 30.0 print(np.max(np.sum(A, axis=0))) # 30 print(np.linalg.norm(A, ord=2)) # 20.24345358700576 print(np.max(np.linalg.svd(A, compute_uv=False))) # 20.24345358700576 print(np.linalg.norm(A, ord=np.inf)) # 25.0 print(np.max(np.sum(A, axis=1))) # 25 print(np.linalg.norm(A, ord='fro')) # 20.273134932713294 print(np.sqrt(np.trace(np.dot(A.T, A)))) # 20.273134932713294
方阵的行列式
numpy.linalg.det(a)
计算行列式。import numpy as np x = np.array([[1, 2], [3, 4]]) print(x) # [[1 2] # [3 4]] print(np.linalg.det(x)) # -2.0000000000000004
矩阵的秩
numpy.linalg.matrix_rank(M, tol=None, hermitian=False)
返回矩阵的秩。import numpy as np I = np.eye(3) # 先创建一个单位阵 print(I) # [[1. 0. 0.] # [0. 1. 0.] # [0. 0. 1.]] r = np.linalg.matrix_rank(I) print(r) # 3 I[1, 1] = 0 # 将该元素置为0 print(I) # [[1. 0. 0.] # [0. 0. 0.] # [0. 0. 1.]] r = np.linalg.matrix_rank(I) # 此时秩变成2 print(r) # 2
矩阵的迹
numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
方阵的迹就是主对角元素之和。import numpy as np x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]]) print(x) # [[1 2 3] # [3 4 5] # [6 7 8]] y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]]) print(y) # [[5 4 2] # [1 7 9] # [0 4 5]] print(np.trace(x)) # A的迹等于A.T的迹 # 13 print(np.trace(np.transpose(x))) # 13 print(np.trace(x + y)) # 和的迹 等于 迹的和 # 30 print(np.trace(x) + np.trace(y)) # 30
解方程和逆矩阵
逆矩阵(inverse matrix)
设 A 是数域上的一个 n 阶矩阵,若在相同数域上存在另一个 n 阶矩阵 B,使得:
AB=BA=E
(E 为单位矩阵),则我们称 B 是 A 的逆矩阵,而 A 则被称为可逆矩阵。numpy.linalg.inv(a)
计算矩阵a
的逆矩阵(矩阵可逆的充要条件:det(a) != 0
,或者a
满秩)。import numpy as np A = np.array([[1, -2, 1], [0, 2, -1], [1, 1, -2]]) print(A) # [[ 1 -2 1] # [ 0 2 -1] # [ 1 1 -2]] # 求A的行列式,不为零则存在逆矩阵 A_det = np.linalg.det(A) print(A_det) # -2.9999999999999996 A_inverse = np.linalg.inv(A) # 求A的逆矩阵 print(A_inverse) # [[ 1.00000000e+00 1.00000000e+00 -1.11022302e-16] # [ 3.33333333e-01 1.00000000e+00 -3.33333333e-01] # [ 6.66666667e-01 1.00000000e+00 -6.66666667e-01]] x = np.allclose(np.dot(A, A_inverse), np.eye(3)) print(x) # True x = np.allclose(np.dot(A_inverse, A), np.eye(3)) print(x) # True A_companion = A_inverse * A_det # 求A的伴随矩阵 print(A_companion) # [[-3.00000000e+00 -3.00000000e+00 3.33066907e-16] # [-1.00000000e+00 -3.00000000e+00 1.00000000e+00] # [-2.00000000e+00 -3.00000000e+00 2.00000000e+00]]
求解线性方程组
numpy.linalg.solve(a, b)
求解线性方程组或矩阵方程。# x + 2y + z = 7 # 2x - y + 3z = 7 # 3x + y + 2z =18 import numpy as np A = np.array([[1, 2, 1], [2, -1, 3], [3, 1, 2]]) b = np.array([7, 7, 18]) x = np.linalg.solve(A, b) print(x) # [ 7. 1. -2.] x = np.linalg.inv(A).dot(b) print(x) # [ 7. 1. -2.] y = np.allclose(np.dot(A, x), b) print(y) # True
关于求解矩阵特征值与特征向量
幂法
-
import numpy as np a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵 A = np.mat(a) N = len(A) # U = np.mat([1]*N).T # V = np.mat([1]*N).T U = np.mat([0,1,1]).T V = np.mat([0,1,1]).T sigma = 0.000001#精度 M = 1000#最大迭代次数 m = 1 k = 0 before = m while(k<M): before = m V = A*U m = max(V)#[0,0] U = V/m if(abs(m-before)<sigma): print("特征值为",(m),sep='\n') print("特征向量为",(U),sep='\n') break k += 1 if k==M: print('计算失败,k=',k)
import numpy as np a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵 N = len(a) A = np.mat(a) U = np.mat([1]*N).T V = np.mat([1]*N).T sigma = 0.000001#精度 M = 1000#最大迭代次数 m = 1 k = 0 before = m while(k<M): before = m V = A.I*U m = max(V)[0,0] U = V/m if(abs(m-before)<sigma): print("特征值为",(1/m),sep='\n') print("特征向量为",(U),sep='\n') break k += 1 if k==M: print('计算失败,k=',k)
原点平移加速法
-
import numpy as np # a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵 a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵 N = len(a) #原点加速法: step = 2.5 for i in range(N): a[i][i] -=step A = np.mat(a) U = np.mat([1]*N).T V = np.mat([1]*N).T sigma = 0.000001#精度 M = 1000#最大迭代次数 m = 1 k = 0 before = m while(k<M): before = m V = A*U m = max(V)[0,0] U = V/m if(abs(m-before)<sigma): print("特征值为",(1/m),sep='\n') print("特征向量为",(U),sep='\n') break k += 1 if k==M: print('计算失败,k=',k)
import numpy as np a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵 N = len(a) A = np.mat(a) #计算特征值 print(np.linalg.eigvals(A)) #计算特征向量 print(np.linalg.eig(A))