最长公共字串

动态规划法

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

 

 

【问题】 求两字符序列的最长公共字符子序列

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:

(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;

(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;

(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

求解:

 

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:

 

 

recursive formula

回溯输出最长公共子序列过程:

flow

 

算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m * n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m * n)。

Java代码实现:

public class MaxPipei {
	public void pipei(char arr1[], char arr2[]) {
		int b[][] = new int[arr1.length][arr2.length];
		int c[][] = new int[arr1.length][arr2.length];
		for (int i = 0; i < arr1.length; i++) {
			if (arr1[i] == arr2[0]) {
				while (i < arr1.length) {
					c[i][0] = 1;
					b[i][0] = 1;
					i++;
				}
			} else
				c[i][0] = 0;
		}

		for (int j = 0; j < arr2.length; j++) {
			if (arr2[j] == arr1[0]) {
				while (j < arr2.length) {
					c[0][j] = 1;
					b[0][j] = 1;
					j++;
				}
			} else
				c[0][j] = 0;
		}

		for (int i = 1; i < arr1.length; i++) {
			for (int j = 1; j < arr2.length; j++) {
				if (arr1[i] == arr2[j]) {
					c[i][j] = c[i - 1][j - 1] + 1;
					b[i][j] = 1;
				}
				// System.out.println(i + ":" + j);
				if (arr1[i] != arr2[j]) {
					if (c[i - 1][j] >= c[i][j - 1]) {
						c[i][j] = c[i - 1][j];
						b[i][j] = 0;
					} else if (c[i - 1][j] < c[i][j - 1]) {
						c[i][j] = c[i][j - 1];
						b[i][j] = -1;
					}
				}
			}
		}
		System.out.println(c[arr1.length - 1][arr2.length - 1]);

		Display(b, arr1, arr1.length - 1, arr2.length - 1);
	}

	public static void Display(int[][] b, char[] x, int i, int j) {
		if (i == -1 || j == -1)
			return;

		if (b[i][j] == 1) {
			Display(b, x, i - 1, j - 1);
			System.out.print(x[i] + " ");
		} else if (b[i][j] == 0) {
			Display(b, x, i - 1, j);
		} else if (b[i][j] == -1) {
			Display(b, x, i, j - 1);
		}
	}

	public static void main(String[] args) {
		MaxPipei maxPipei = new MaxPipei();
		maxPipei.pipei("nihaodddiccc".toCharArray(), "hapoii".toCharArray());
	}
}

 子串如果是连续的,算法如下

import java.util.ArrayList;
import java.util.List;

public class MaxPublicSubString {
	List<Integer> maxstr = new ArrayList<Integer>();
	int maxLen = Integer.MIN_VALUE;

	public void pipei(char arr1[], char arr2[]) {
		//同不连续的字符串类似初始化。
		int c[][] = new int[arr1.length][arr2.length];
		for (int i = 0; i < arr1.length; i++) {
			if (arr1[i] == arr2[0]) {
				c[i][0] = 1;
			} else
				c[i][0] = 0;
		}

		for (int j = 0; j < arr2.length; j++) {
			if (arr2[j] == arr1[0]) {
				c[0][j] = 1;
			} else
				c[0][j] = 0;
		}
		StringBuffer sb = new StringBuffer();
		for (int i = 1; i < arr1.length; i++) {
			for (int j = 1; j < arr2.length; j++) {
				//当前字符相等,则用前面动态规划的值加1,否则为0
				c[i][j] = arr1[i] == arr2[j] ? 1 + c[i - 1][j - 1] : 0;
				//如果大于最大长度则改变记录位置。
				if (c[i][j] > maxLen) {
					maxstr.clear();
					maxstr.add(i);
					maxLen = c[i][j];
				} else if (c[i][j] == maxLen) {
					maxstr.add(i);
				}
			}
		}
	}

	public static void main(String[] args) {
		String str1 = new String("binghaven");
		String str2 = new String("jingseven");
		MaxPublicSubString mps = new MaxPublicSubString();
		mps.pipei(str1.toCharArray(), str2.toCharArray());
		System.out.println(mps.maxLen);
		for (Integer i : mps.maxstr) {
			System.out.println(str1.substring(i - mps.maxLen + 1, i + 1));
		}
	}
}

 

### 关于最长公共子串 (LCS) 的解释 最长公共子串是指给定两个字符串序列,从中找出完全匹配的最长连续字符片段。不同于最长公共子序列(LCS),这里的子串要求是连续的[^2]。 ### C# 中实现最长公共子串算法 为了实现在C#中的最长公共子串算法,可以采用动态规划的方法。这种方法通过构建一个二维数组`dp`来存储中间计算的结果,其中`dp[i][j]`表示第一个字符串前i个字符和第二个字符串前j个字符之间的最大公共子串长度。当遇到相同字符时更新该位置的最大值并记录结束位置;如果不同则重置当前比较长度为0。 下面是具体的C#代码实现: ```csharp using System; class Program { static void Main() { string str1 = "acbcbcef"; string str2 = "abcbced"; Tuple<string, int> result = FindLongestCommonSubstring(str1, str2); Console.WriteLine($"The longest common substring is '{result.Item1}' with length {result.Item2}"); } public static Tuple<string, int> FindLongestCommonSubstring(string s1, string s2){ int[,] dp = new int[s1.Length + 1, s2.Length + 1]; int maxLength = 0; int endIndexS1 = 0; for(int i = 1; i <= s1.Length; ++i){ for(int j = 1; j <= s2.Length; ++j){ if(s1[i - 1] == s2[j - 1]){ dp[i,j] = dp[i-1,j-1] + 1; if(dp[i,j] > maxLength){ maxLength = dp[i,j]; endIndexS1 = i; } }else{ dp[i,j] = 0; } } } return Tuple.Create(s1.Substring(endIndexS1 - maxLength, maxLength), maxLength); } } ``` 上述程序定义了一个名为 `FindLongestCommonSubstring` 的函数,它接收两个参数作为输入,并返回由元组组成的输出,其中包括最长公共子串及其对应的长度。此方法利用了动态规划的思想,在遍历过程中不断寻找最优解直到整个表格被填满为止[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值