Coursera 深度学习 deep learning.ai 吴恩达 第三课 结构化机器学习项目 第一周 测试题目 Bird recognition in the city of Peacetopia

博客涉及吴恩达在 Coursera 平台的课程,涵盖 deeplearning.ai 相关内容,聚焦深度学习与机器学习领域,为学习者提供专业知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This paper investigates acoustic modeling for recognition of bird species from audio field recordings. First, the acoustic scene is decomposed into isolated segments, corresponding to detected sinusoids. Each segment is represented by a sequence of the frequency and normalized magnitude values of the sinusoid. The temporal evolution of these features is modeled using hidden Markov models(HMMs).A novel method for an unsupervised modeling of individual bird vocalization elements is proposed.The element models are initialized using HMM-based clustering and then further trained using an iterative maximum likelihood label re-assignment procedure. State duration modeling, performed in a post-recognition stage, is explored. Finally, we developed a hybrid deep neural network—hidden Markov model. The developed acoustic models are employed for bird species identification, detection of specific species, and recognition of multiple bird species vocalizing in a given recording.The detection system employs score normalization. Recognition of multiple bird species is performed based on maximizing the likelihood of a set of segments on a subset of bird species models, with penalization based on Bayesian information criterion applied. Experimental evaluations are performed on more than 37 h of sound field recordings, containing vocalizations of 48 bird species, plus more than 16 h of non-bird sound recordings. Using 3 s of the detected signal, the best system achieved: identification accuracy of 98.7%,detection with the equal error rate of 2.7%, and recognition accuracy of 97.3% and 95.4% when vocalizations of multiple bird species are present, with the number of bird species known and estimated, respectively.
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值