resNet论文笔记

resNet通过深度残差学习框架解决深层神经网络的收敛问题,提出理想的mapping H(x)与新增非线性层F(x)的差值形式,使得网络能更好地优化。相比VGG,resNet在ImageNet上的表现更优,并在检测和分割任务中表现出色。其核心是通过残差模块实现端到端学习,加速了训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Deep Residual Learning for Image Recognition》是2016年CVPR的最佳论文,也是我Kaiming男神第二次获得CVPR的最佳论文,简直强的一批啊!

摘要

resNet主要解决一个问题,就是更深的神经网络如何收敛的问题,为了解决这个问题,论文提出了一个残差学习的框架。然后简单跟VGG比较了一下,152层的残差网络,比VGG深了8倍,但是比VGG复杂度更低,当然在ImageNet上的表现肯定比VGG更好,是2015年ILSVRC分类任务的冠军。

另外用resNet作为预训练模型的检测和分割效果也要更好,这个比较好理解,分类效果提升必然带来检测和分割的准确性提升。

介绍

在resNet之前,随着网络层数的增加,收敛越来越难,大家通常把其原因归结为梯度消失或者梯度爆炸,这是不对的。另外当训练网络的时候,也会有这样一个问题,当网络层数加深的时候,准确率可能会快速的下降,这当然也不是由过拟合导致的。我们可以这样理解,构造一个深度模型,我们把新加的层叫做identity mapping(这个mapping实在不知道怎么翻译好,尴尬……),而其他层从学好的浅层模型复制过来。现在我们需要保证这个构造的深度模型并不会比之前的浅层模型产生更高的训练错误,然而目前并没有好的比较方法。

从图上可以看到,层数越多,收敛越慢,且error更高。

在论文中,kaiming大佬提出了一个深度残差学习框架来解决网络加深之后准确率下降的问题。用公式来表示,假如我们需要的理想的mapping定义为H(x),那么我们新加的非线性层就是F(x):=H(x)x,原始的mapping就从x变成了 F(x)+x 。也就是说,如果我们之前的x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值